

EXPERIMENTER • ANALYSER • VALORISER

ANALYSIS OF GENOMIC DATA IN THE CONTEXT OF MACROARRAYS

presented by

Julie POUGET

Contents at a glance

DNA-arrays technology

Data to be considered

Statistical analysis method used

Discussion

DNA arrays principles

DNA-Arrays

- Based on the principle of complementary bases
- It is a solid surface on which are fixed, in a orderly way, spots of DNA oligonucleotides (probes)

Labeled nucleic acids (targets) are hybridized with the probes on the support

- Probes-targets hybridization is detected and quantified to determine relative abundance of the target
- Quantification of the gene expression

Aims of DNA-arrays

To measure and to evaluate gene expression differences between genes, on a large scale in a specific cell context

Analysis The data to be considered

Macroarrays

Microarrays and macroarrays may be used to differentiate the spot density on the support

Macroarray term is usually used for the larger support and relatively low spot density (<200 spots/cm²).

Macroarrays : data to be treated

CONTEXT :

- One array = one experimental condition
- +/- UVA and +/- Se
- About 850 zones of spot deposition by macroarray including :
 - □ More than 300 oligos (probe) with replicates
 - Additional oligos : TOM et TOM-as (used as control of hybridization and as quality control)
 - Some blanks to measure the background level

Macroarrays : data to be treated

- •Genes repeated on the position
- One-color array
- •Several arrays for the same experimental condition

Macroarrays Statistical analysis

Statistical analysis: Data processing (1)

Logarithmic transformation in base 2 from the raw data

Advantages of log2:

¤ Treating differential up-regulation and down-regulation
¤ The extreme values have a lesser contribution (= robustness)
¤ The distribution is pseudo-normal

EXPERIMENTER . ANALYSER . VALORISER

Statistical analysis: Data processing (2)

Background correction

It consists in "subtracting" the background level from each measured spot intensity. From the data "blanks" *(transformed by log2)*:

Statistical analysis: Data processing (3)

Normalization : Why normalizing?

Normalization : a step to eliminate bias factors

¤ To be confident about the data qualities coming from an array

¤ To be able to compare several macroarrays using the same set of genes coming from the same experimental condition (duplicate or triplicate)

- ¤ To be able to exploit any array possessing a gene or a group of genes of interest as:
 - get back public data
 - include the results of several experiments

Statistical analysis: Data processing (4)

Normalization : How ?

Several methods exist such as:

- LOWESS normalization (two channels, so depends on the labeling of the target)
- Quantiles normalization
- Normalization by standard scores on arrays
- Global normalization methods
- Etc...

Statistical analysis: Data processing (5)

Normalization : A question of point of view !

Statistical analysis: Data processing (6')

Comparison

Puce *** 1 *** 2 *** 3 *** 4 *** 5 *** 6 *** 7 *** 8 *** 9 *** 10 *** 11

Puce *** 1 *** 2 *** 3 *** 4 *** 5 *** 6 *** 7 *** 8 *** 9 *** 10 *** 11

Pone *** 1 *** 2 *** 3 *** 4 *** 5 *** 6 *** 7 *** 8 *** 9 *** 10 *** 11

Statistical analysis: Data processing (7)

Last step of data processing

What is an outlier ?

Usually, an **outlier** is defined as an observation generated from a different distribution (or a different model) from the main set of data.

Statistical analysis: Tests (1)

Determination of the model

Proc MIXED

A mixed model is a statistical model containing both **fixed effects** and **random effect**. It is particularly useful in settings **where repeated measurements are made** on the same statistical units, or where measurements are made on clusters of related statistical units.

> Are there some repeated data? One model for each biological question... Are there random effects?

> > What problem do we want to solve?

Statistical analysis: Tests (2)

Multiple tests

It means making a test gene by gene. For each test,

H0 : {the gene is not differentially expressed} H1 : {the gene is differentially expressed}

What does mean multiple tests ?

- Several thousand tests simultaneously
- Structure of dependence: plans of correlation intern complex between variables

	Decision	
	H0 no rejected	H0 rejected
H0 true	True positives	False positives
H1 true	False negatives	True negatives

Two types of error associated to the multiple tests: **the FWER** (Family Wise Error Rate) and **the FDR** error (False Discovery Rate).

Statistical analysis: Tests (3)

Multiple Tests Adjustment

- FWER (*Family Wise Error Rate*) Bonferroni
- FDR (*False Discovery Rate*) Benjamini et Hochberg

OBJECTIVE : Reduce the number of false positives and false negatives

320 genes	Mixed model	Mixed Model + FDR
Test on normalized values	37	1
Test on normalized values without outlier	41	2

Statistical analysis: Tests (4)

Pairwise comparisons

When an effect is significant, it is possible to look at the pairwise comparisons but it needs multiple comparison adjustments

Dunnett's adjustment: When all differences are analyzed with a control level

<u>Tukey's adjustment:</u> To adjust all pairwise differences

Summary and conclusion

Statistical process

Summary and conclusion

Statistical process

