Testing for the Differential Expression of Genes at the Probe Level of Affymetrix Microarray data

T. Khamiakova

Interuniversity Institute for Biostatistics and Statistical bioinformatics

Universiteit Hasselt

29 September 2010

Overview

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

1 Introduction

2 Affymetrix Microarray Probe Level Data

3 Methods

- Mixed model approach
- Dataset
- 4 Results and Discussion
- 5 Simulation Study

Advantage of Probe Level Analysis

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Standard practice:

- summarization (with previous pre-processing)
- analysis of differential expression

Drawback of Summarization:

Loss of information

Alternative:

Differential expression on probe level

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Probes:

- Probeset multivariate measurement of gene expression
- Probe = random variable measuring expression of gene, has a specific mean μ_i

Data structure

- each array can add extra variability to GE measurements
 - in more complex designs fixed effects also introduce variability

Illustration

Adjustment for covariates

LMM-2:

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods

LMM

Dataset

Results and Discussion

Simulation Study

$$log(PM_{iik}) = \mu_i + \alpha \cdot T_{ik} + b_i + \epsilon_{iik}$$

 \blacksquare μ_j - probe-specific mean

- $b_i \sim N(0, \sigma_b^2)$ array-to-array variability
- $\epsilon_{ij} \sim N(0, \sigma_{\epsilon}^2)$ measurement error
- α covariate effect
- \blacksquare T_{ik} covariate indicator

Example Dataset

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Sialin DataSet (Janssen Pharmaceutica):

- Two groups of mice: wild-type (WT) and knock-out (KO)
- Expression measured on Day 18
- Big changes in gene expression are expected
- Sample size: 6 WT, 6 KO
- $\blacksquare \approx 16000$ genes

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Number of significant tests

Testing for variance component and treatment effect

		σ_b		
		NS	S	Total
Trt	NS	14910	869	15779
	S	572	44	616
	Total	15482	913	16395

Significant Treatment and ICC

Significant Treatment, Non-Significant ICC

Probe Level Analysis

Non-Significant Treatment, Significant ICC

Probe Level Analysis

Non-Significant Treatment, Non-Significant ICC

Probe Level Analysis

Analysis of Differential Expression

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Simple Analysis

- on probe level data (estimated treatment effect from LMM)
- t-test on summarized data (FARMS and RMA summarized)
- FDR correction at 0.05

Number of significant genes with treatment effect

	Probe Level	FARMS	RMA
LM, t-test	616	553	371

Analysis of Differential Expression

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Results

■ more significant genes from probe-level analysis

- due to higher power (?)
- due to higher error rate (?)

Simulation Study

- investigate power and FDR for probe level analysis
- varied sample size and probeset size
- varied treatment effect and intra-class correlation

Results

Probe Level Analysis

Discussion

Probe Level Analysis

Khamiakova et al.

Introduction

Affymetrix Microarray Probe Level Data

Methods LMM Dataset

Results and Discussion

Simulation Study

Analysis of DE

- Probe-level analysis has higher power
- FDR is controlled for all methods

Follow-Up

- Power of other statistical tests on probe level (e.g. SAM)
- Power of the probe level analysis compared to the filtered results
- 3 Extensions of the LMM

Acknowledgments

Probe Level Analysis

Khamiakova et al.

Results and

Simulation Study

IWT project

J&J PRD Hinrich Goehlmann Willem Talloen An De Bondt Luc Bijnens

> I-Biostat: Adetayo Kasim **Ziv Shkedy** Danlin Suzy Van Sanden

Niedersachsei

Institute of Bioinformatics (Johannes Kepler University): Sepp Hochreiter Djork-Arne Clevert