Modeling Dose-response Microarray Data in Early Drug Development Experiments

Dan Lin I-Biostat, Hasselt University 09/29/2010

Overview

- Introduction to dose-response modeling in microarray experiments
- Focus: dose-response modeling+ applications
 Test for trend
 - Classification of trends
- Concluding remarks and related research

Introduction to Dose-response study

- Aim
 - To understand mechanism of action
 - To explore the desired properties
- Biological information from gene expression data create new opportunities for developing effective therapies
 - Identify drug target
 - Explore functions of genes/pathways in a dosedependency manner

Application of Microarrays in Drug Discovery:

Pharmacology study

Gene c: non-monotonic trend

4

Case Study for Dose-response Modeling

Human epidermal squamous carcinoma celllines

16,998 genes measured on each array

Dose-response Modeling

• Two main research questions:

Is there a dose-response relationship?

what's the nature of dose-response relationship?
 Classification of dose-response curve shapes

Dose-response Modeling

Test for Trend

The setting:

$$y_{ij} = f(\theta, \mathbf{x}_i) + \epsilon_{ij}$$

- Non-parametric method: Isotonic Regression
 - Without the knowledge of dose-response shape
 - Mechanistic model
- Parametric modeling: e.g. 4PL Regression
 - Prior knowledge of dose-response shape
 - Empirical model

Test for Trend

- For gene (i=1, ..., m) with K dose (j=1,...,K) $H_0: \quad \mu_1 = \mu_2 = ... = \mu_k$ $H_1^{Up}: \quad \mu_1 \leq \mu_2 \leq ... \leq \mu_k$ or $H_1^{Down}: \quad \mu_1 \geq \mu_2 \geq ... \geq \mu_k$ with at lease one inequality
- Pooled-adjacent-violator-algorithm (PAVA) to obtain estimates of the isotonic means $\hat{\mu}^*$

Data of one gene

Under increasing constraints

Under decreasing constraints

Under decreasing constraints

Test Statistics

- LRT: $\lambda^{2/N} = \frac{\hat{\sigma}_{H_1}^2}{\hat{\sigma}_{H_0}^2}$ (Bartholomew 1959)
- Direction of trend is unknown in advance
- In practice, we calculate LRT statistics twice for each direction

Test Statistics $M = \frac{\hat{\mu}_{K}^{*} - \hat{\mu}_{1}^{*}}{\sqrt{\sum_{j} (X_{jl} - \hat{\mu}_{j}^{*})^{2} / (N - K)}}$ 0 (Hu *et al.* 2005) 0 ო gene expression $M = \frac{\hat{\mu}_{K}^{*} - \hat{\mu}_{1}^{*}}{\sqrt{\sum_{jl} (X_{jl} - \hat{\mu}_{j}^{*})^{2} / (N - J)}}$ 0 0 0 where $J = unique(\hat{\mu}^*)$ 0 φ (*Lin et al.* 2007) 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 dose

16

Directional Inference

Two-sided p-values:

 $p = 2 \times min(p^{Up}, p^{Down})$

Determination of direction

- If $p^{Up} \leq \alpha/2$, reject H_0 and declare H_1^{Up}
- If $p^{Down} \leq \alpha/2$, reject H_0 and declare H_1^{Down}
- If p^{Up} and $p^{Down} \le \alpha/2$, reject H_0 and declare a nonmonotonic trend

Multiple Testing Issue

 Testing of thousands of genes simultaneously increases the Type I error

	<pre># not rejected</pre>	# rejected	Total
# true null	U	V	m ₀
# false null	Т	S	m ₁
Total	W	R	m

- Family–Wise Error Rate (FWER) = P(V>0)
- False Discovery Rate (FDR, Benjamini and Hochberg 1995)

$$Q = \begin{cases} V/R & R > 0\\ 0 & R = 0 \end{cases}$$

Testing for Trend: Application

Case study: data for EGF doses under control

index

Testing for Trend: Conclusions

Results:

0

- Five test statistics show a similar number of significant findings
- Due to the unknown distribution for the test statistics of the M and modified M tests, resampling-based procedures are employed
- Simulation study has confirmed this finding, in which the LRT, M, and modified M yield slightly higher power

Lin *et al.* (2007)

Dose-response Modeling

Classification Trends

dose

dose

10 100

dose

Classification of Trends

23

Classification of Trends Using Information Criteria

- Akaike information criterion (Akaike 1973, 1974) $AIC = -2\log l(\theta \mid D) + 2M$
- Bayesian information criterion (Schwarz 1978)

 $BIC = -2\log l(\theta \mid D) + M\log(N)$

- Order restricted information criterion (Anraku 1999) $ORIC = -2\log l(\theta | D) + \sum_{j=1}^{K} iP(j,k,w_j)$
 - where P(j, k, w_j) denotes the level probability that for given K doses under H₀ the isotonic regression will result in j unique isotonic means

Results of Information Criteria for Model Seletion

	Likelihood	AIC	BIC	ORIC
g_1	344	1528	1648	1348
g ₂	25	307	369	221
B ₃	14	106	126	86
g ₄	343	370	337	253
g ₅	885	823	715	655
g_6	178	170	149	120
g ₇	1710	195	155	816

Lin *et al.* (2008)

- Multiple contrast test (Mukerjee et al. 1986, 1987)
- Multiple contrast test can be used to test for trend, which shows similar results as the LRT
- Multiple contrasts are a nature link to select the best contrast for the dose-response curve
- Isotonic coefficients can be used to describe the dose-response relationship with corresponding shapes

Seven models:

μ1 = μ2 = μ3 <mark><</mark> μ4	$c_1 = (c_{11}, c_{21}, c_{31}, c_{41})$	$T_{1}^{sc} = \frac{\sum_{j=1}^{4} n_{j} c_{j1} \overline{X}_{j}}{s \sqrt{\sum_{j=1}^{4} n_{j} c_{j}}}$
μ1 = μ2 <mark><</mark> μ3 = μ4	$\mathbf{c}_2 = (\mathbf{c}_{12}, \mathbf{c}_{22}, \mathbf{c}_{32}, \mathbf{c}_{42})$	T_2^{sc}
μ1	$c_3 = (c_{13}, c_{23}, c_{33}, c_{43})$	T_3^{sc}
μ1	c ₄ =(c ₁₄ , c ₂₄ , c ₃₄ , c ₄₄)	T_4^{sc}
μ1 = μ2 <mark><</mark> μ3 < μ4	$\mathbf{c}_5 = (\mathbf{c}_{15}, \mathbf{c}_{25}, \mathbf{c}_{35}, \mathbf{c}_{45})$	T_5^{sc}
μ1	$c_6 = (c_{16}, c_{26}, c_{36}, c_{46})$	T_6^{sc}
μ1 < μ2 < μ3 < μ4	$c_7 = (c_{17}, c_{27}, c_{37}, c_{47})$	T_7^{sc}

The MCT statistic builds the maximum over seven of such single contrasts

$$T^{MC} = \max\{T_1^{sc}, T_2^{sc}, ..., T_7^{sc}\}$$

- Inference of MCT statistics can be made based on the *q*-multivariate T distribution
- Multiplicity adjustment: FWER for each gene

> Take $\mu_1 < \mu_2 {=} \mu_3 {<} \mu_4$ for example (Abelson and Tukey 1963)

Inequality	Corner Pattern	Corner Vector	SSD
$\mu_1 < \mu_2$	$\mu_1 < \mu_2 = \mu_3 = \mu_4$	(1, 0, 0, 1)	3/4
$\mu_3 < \mu_4$	$\mu_1 = \mu_2 = \mu_3 < \mu_4$	(0, 0, 0, 1)	3/4

• where
$$SSD = \sum_{j} (\mu_{j} - \overline{\mu})^{2}$$

To obtain the contrast coefficients by solving

(s)
$$c_1 + c_2 + c_3 + c_4 = 1$$

(a) $c_2 + c_3 + c_4 = \sqrt{3/4}$
(b) $c_4 = \sqrt{3/4}$
 $c_1 = -0.866$
 $c_2 = c_3 = 0$
 $c_4 = 0.866$

Seven models:

μ1 = μ2 = μ3 < μ4	c ₁ =(-0.2887, -0.2887, -0.2887, 0.866)
μ1 = μ2 <mark><</mark> μ3 = μ4	c ₂ =(-0.5, -0.5, 0.5, 0.5)
μ1 < μ2 = μ3 = μ4	c ₃ =(-0.866, 0.2887, 0.2887, 0.2887)
μ1 < μ2 = μ3 < μ4	c ₄ =(-0.866, 0, 0, 0.866)
μ1 = μ2 <mark><</mark> μ3 < μ4	c ₅ =(-0.5, -0.5, -0.134, 0.866)
μ1	c ₆ =(−0.866, −0.134, 0.5, 0.5)
μ1 < μ2 < μ3 < μ4	c ₇ =(-0.886, -0.134, 0.134, 0.866)

Classification of Trends: Application

3499	AIC	BIC	ORIC
g ₁	1528	1648	1348
g ₂	307	369	221
g ₃	106	126	86
g ₄	370	337	253
B 5	823	715	655
g_6	170	149	120
g ₇	195	155	816

3277	MCT
g ₁	688
g ₂	205
g ₃	1515
g ₄	60
g ₅	463
g ₆	93
g ₇	253

Lin et al. (2010)

Classification of Trends: Conclusions

- The AIC and BIC tend to classify genes with simpler models
- The ORIC penalizes less on complex model (g₇)
- The MCT favors simpler models

Simulation study is needed to compare the performance of these different approaches

Concluding Remarks

Two stage analysis: to ensure the control of the FDR by the LRT in the first step and information criteria for model selection

Unified analysis: MCT integrates two steps

References

Lin D., Shkedy Z., Yekutieli D., Dhammika A., Bijnens, L., Modeling Dose-response Microarray Data in Early Drug Development Experiments Using R, Springer (to appear in 2010).

- Parametric modeling
- Modeling averaging of parameters of interest from the models
- Bayesian approach for order restricted inference
- MCT ratio test
- FDR-adjusted CIs for ratio parameters
- Gene set analysis

Thank you!