A Unified Approach to Flexible and Powerful Modeling Of Pre-Clinical Combination Studies

Chris Harbron Discovery Statistics AstraZeneca

Why Drug Combinations?

- Making better use of our assets
- In many disease areas, e.g oncology, cardiovascular, HIV, polypharmacy is the norm
- Numerous examples of approvals for drug combinations
- Increasingly focussed and selective compounds
- Increased molecular & pathway level understanding
 - Hypothesise and understanding synergistic actions
 - Link with systems biology
- Recent FDA call for comments on combination drug treatments

Classification Of Combinations • Efficacy Enhancing

- Increased efficacy in combination beyond what can be achieved by single agent
- Synergy : greater response than expected under additivity
- Indicative of a positive mechanistic interaction
- Potential for Patentable Intellectual Property
- Dose Sparing
 - Efficacy in combination achieved at lower doses than by a single agent
 - Synergy : greater response than expected under additivity
 - Indicative of a positive mechanistic interaction
 - Potential for Patentable Intellectual Property
- Beneficial
 - Efficacy in combination achieved at lower doses than by a single agent
 - FDA guidelines on combinations refer to as contributing
 - May be compatible with compounds sharing pathways and mechanism of action

Synergy : greater response than expected under additivity Harder

4

Assessing Synergy Loewe Additivity

IC70

IC50

IC30

Based around "sham synergy"
or "self synergy"
A combination of a compound
with itself should give the same
effect as a monotherapy at the
sum of the doses.

IC70

IC50

IC30

Interaction Index – Berenbaum Combination Index – Chou & Talalay

Interaction Index – Berenbaum Combination Index – Chou & Talalay

straZeneca Discovery Statistics

Interaction Indices

• Wish to calculate these:

- With standard errors / confidence intervals
- Statements of confidence and significance tests

• Flexibly and powerfully

- Utilise all data in a wide variety of designs
- Combining combination doses together
- Overall assessments of synergy
- Covering a wide variety of situations
 - Partial responses
 - Inactive compounds as monotherapies
 - Multiple subjects or plates

Unified Tau

 $d_A \text{ or } d_B = 0$ Monotherapies

 $d_A and d_B > 0$ Combinations

- Where $au_{(i)}$ is either:
 - a constant response surface
 - (with discontinuities at the axes)
 - a separate value for each point
 - Berenbaum's interaction index
 - a separate value for each ray (segment)
 - a separate value for each dose level of a compound
 - a continuous function of dose or ray

% Inhibition

% Inhibtion

EDA Suggests Synergy At Higher Doses Of Drug A

Data & Isobologram Assuming Additivity

Identify Individual Combinations Significantly Demonstrating Synergy

13 Chris Harbron, A Unified Approach to Flexible and Powerful Modeling Of Pre-Clinical Combination Studies, NCSC 2010

Estimates Of Synergy With 95% CIs Overall & For Different Dose Levels

¹⁴ Chris Harbron, A Unified Approach to Flexible and Powerful Modeling Of Pre-Clinical Combination Studies, NCSC 2010

Testing Hierarchies of Models

Model	rdf	RSS	df	F	p-Value
Additive	158	5704			
Common т	157	3672	1	86.86	2x10 ⁻¹⁶
Linearly varying t over doses of compound A	156	3130	1	27.00	6x10 ⁻⁷
Separately varying T over doses of compound A	152	2834	4	3.96	0.004
Separate T for each combination	122	2079	30	1.47	0.072
Linearly varying T over doses of compound B	156	3672	1	0.00	0.984
Separately varying T over doses of compound B	152	3334	4	3.85	0.005
Separate T for each combination	122	2079	30	2.45	0.0003

15 Chris Harbron, A Unified Approach to Flexible and Powerful Modeling Of Pre-Clinical Combination Studies, NCSC 2010

Summary

- Early identification of synergistic drug combinations of strategic importance within the pharmaceutical industry
- Powerful and flexible methodology for identifying, quantifying and characterising synergy
- Utilises all data to analyse any design with sufficient monotherapy data
- Consistent approach across different designs and response scenarios
- Found to be robust even to mis-specifications of response curves
- Implementation in R provides a powerful environment for fitting and visualising these models building upon standard functions e.g. nls() and anova()

A flexible unified approach to the analysis of pre-clinical combination studies, 2010, Statistics in Medicine, 29 (16) 1746-1756

