Characterizing In vitro Synergy using the Ray design methodology

Application to an Oncology combination study

Sophie Ruquet, Noëlle Boussac SANOFI-AVENTIS NCSC 2010

- Synergy definition and Loewe additivity model
- Ray design methodology applied to an Oncology combination study
 - Context and preliminary data
 - Experimental ray design
 - Statistical analysis and modeling
 - Model fitting and results validation
 - Conclusion

Ray design methodology: pros and cons

Definition <<u>pharmacology</u>, <u>physiology</u>>: The <u>interaction</u> of two or more <u>treatments</u> such that their combined <u>effect</u> is greater than the <u>sum</u> of the <u>individual</u> effects observed when each treatment is administered alone

Loewe additivity model (Loewe and Muischnek, 1926)

- Most suitable reference model
- Reasoning at fixed effect: in a synergistic mixture, lower concentrations of the two products are needed to obtain a given effect, in comparison with additive situation
- Equation for Loewe additivity model between products A and B

$$\frac{C_A}{IC_{X,A}} + \frac{C_B}{IC_{X,B}} = 1$$

- C_A, C_B: concentrations of each product in the mixture necessary to obtain X% of effect
- IC_{X,A}, IC_{X,B}: concentrations of products A and B necessary to obtain X% of effect for each product alone (often relative IC50, concentration to obtain 50% of the delta between the maximum and the minimum effects)

Sanofi aventis

- Objective: study the In vitro combination of two anticancer agents, Prod.A and Prod.B, to detect their possible synergy on a given cancer cell line
- Parameter of interest: Percentage of inhibition of cancer cells growth
- Preliminary results on each product alone: relative IC50s, minimum and maximum concentrations

- Each ray design contains at least 5 rays:
 - Two rays corresponding to each product alone
 - Other rays i consisting of couples of concentrations of products A and B, in a given proportion c_i= C_{Prod.B}/C_{Prod.A}, constant for each ray
 - Each couple of concentrations in duplicates, at least 6-7 successive dilutions by ray within the minimum and maximum concentrations range of each product
- The synergy zone is covered in a symmetric way from the equipotent ray, where c_i= IC50_{Prod.B}/IC50_{Prod.A} and products are equally represented considering their respective potency
- At least three independent experiments (3 Ray designs) performed to ensure robustness of results

Experimental Ray design (2/4)

For each ray, each proportion c_i= C_{Prod.B}/C_{Prod.A} translated into unit of effect of each product alone considering their respective IC50s' values, using the effective fraction

f: $f_i = \frac{1}{c_i \rho + 1}$ where $\rho = \frac{IC50_{Prod.A}}{IC50_{Prod.B}}$ is the relative potency of the two products

- Ex1: f=0.5, effective equipotent ray (f ε]0,1[)
- Ex2: f=0.75, ray where Prod.A is 3 times more represented than Prod.B considering their relative potency, also called ray « 3 for 1 »

• In the study,
$$\rho = \frac{300 \text{nM}}{300 \text{nM}} = 1$$

With 5 rays, taking the two products alone and 3 rays with f=0.75 (ray 3 for 1), f=0.5 (equipotent ray) and f=0.25 (ray 1 for 3) permits to cover equally all the synergy zone

7 Sanofi aventis L'essentiel c'est la santé.

Example: Ray design for Experiment 1 (concentrations in nM)

		-	_			_			_	-			-	
Ray 1 : Product A alone	Mixture	1000	300)	100	30		10	3	;	1	0.3	0.1	0.0 3
	Prod.A	1000	300)	100	30		10	3	;	1	0.3	0.1	0.0 3
	Prod.B	0	0		0	0		0	C)	0	0	0	0
Ray 2 (1 for 30, f=0.03):	Mixture	21000	1030	0	3100	1030	31	0	103	31	10. 3	3.	1	
300nM (Prod.A) + 10000nM (Prod.B)	Prod.A	1000	300		100	30	10)	3	1	0.3	0.	1	
	Prod.B	20000	1000	0	3000	1000	30	00	00	30	10	3		
Ray 3 (1 for 10, f=0.09) :	Mixture	10100		3300)	1100		330		110	33		11	3.3
300nM (Prod.A) + 3000nM (Prod.B)	Prod.A	1000		300		100		30		10	3		1	0.3
	Prod.B	10000		3000)	1000	,	300		100	30		10	3

Ray 4 (1 for 3, f=0.25) : 300nM (Prod.A) + 1000nM (Prod.B)

Mixture	4000	1300	400	130	400	13	4
Prod.A	1000	300	100	30	10	3	1
Prod.B	3000	1000	300	100	30	10	3

Ray 5 (1 for 1, f=0.50) :	
300nM(Prod.A) + 300nM(Prod.B)	3)

Mixture	2000	600	200	60	20	6
Prod.A	1000	300	100	30	10	3
Prod.B	1000	300	100	30	10	3

Ray 6 (3 for 1, f=0.75) :
1000nM~(Prod.A)~+~300nM~(Prod.B)

Mixture	1300	400	130	40	13
Prod.A	1000	300	100	30	10
Prod.B	300	100	30	10	3

Ray 7	:	Product	B	alone	
-------	---	---------	---	-------	--

Mixture	20000	10000	3000	1000	300	100	30	10	3
Prod.A	0	0	0	0	0	0	0	0	0
Prod.B	20000	10000	3000	1000	300	100	30	10	3

Statistical analysis of the Ray design

- For each experiment, global modelling of all rays together, each ray following a 4-parameter concentration-effect (inhibition) logistic curve
- For each experiment and from this global model:
 - Estimation of the experimental values of the IC50s of Prod.A and Prod.B alone
 - Estimation of the experimental values of « f »
 - Estimation of the Loewe additivity index K_i for each ray i (i=2..6)

Concentration-effect model

Generalization to all rays i, i=1, ..., 5 with different parameters Emax, Emin, m, IC50 for each ray:

Global model:
$$E[Y] = Emin_i + \frac{Emax_i - Emin_i}{1 + exp(-m_i ln(\frac{Conc_i}{IC50_i}))}$$

11
11
E[Y] = Emin_i + \frac{Emax_i - Emin_i}{1 + exp(-m_i ln(\frac{Conc_i}{IC50_i}))}
E[Y] = Emin_i + \frac{Emax_i - Emin_i}{1 + exp(-m_i ln(\frac{Conc_i}{IC50_i}))}

Measurement of interaction between drugs (1/2)

K_i value, i=2, 3, 4, permits to measure the relationship (additivity, antagonism or synergy) between the 2 tested products A and B for Ray i:

$$K_{i} = \frac{IC50_{i}(IC50_{A} + c_{i}IC50_{B})}{IC50_{A}IC50_{B}(1 + c_{i})}$$

where

c_i = C_B / C_A for Ray i
 IC50_A, IC50 for product A alone (ray 1)
 IC50_B, IC50 for product B alone (ray 5)
 IC50_i, with for rays i=2, i=3 and i=4, c_i = C_B / C_A

Obtained by the global model

Sanofi aventis L'essentiel c'est la santé.

K_i value is obtained with its corresponding Cl95%

K_i value is significantly:

- Equal to 1 in case of additivity (Cl95% contains '1')
- Inferior to 1 in case of synergy (Cl95% is strictly inferior to '1')
- Superior to 1 in case of antagonism (CI95% is strictly superior to '1')

Emin_i, Emax_i, m_i, IC50_i and K_i estimates are obtained with NLMixed procedure

Fitting the global concentration-effect model

NLMixed SAS software procedure

- Parameters initialization: use of estimations of parameters obtained from the fitting of each curve separately
- For each experiment, simultaneous estimation of adjusted curves parameters: Emin_i, Emax_i, IC50_i, slope m_i and K_i with i=1, ..., 5

Selection of the best model

- First step: full model with Emin_i, Emax_i and m_i specific to each ray
- Second step: for this model, test of equality of the parameters Emin_i, Emax_i and m_i for all rays
- Third step: new model in which the previously significant parameter(s) is(are) considered common to all rays

Sanofi aventis

EXP. 1	Preliminary values	Experimental values
IC50 Prod.A	300	106.78
IC50 Prod.B	300	217.73
f Ray 2	0.03	0.06
f Ray 3	0.09	0.17
f Ray 4	0.25	0.40
f Ray 5	0.50	0.67
f Ray 6	0.75	0.86

EXP. 2	Preliminary values	Experimental values
IC50 Prod.A	300	200.23
IC50 Prod.B	300	165.80
f Ray 2	0.23	0.20
f Ray 3	0.50	0.45
f Ray 4	0.77	0.73
f Ray 5	0.91	0.89
f Ray 6	0.97	0.96

Conclusion domain similar to the expected one

Right shift of the conclusion domain, f values higher than expected

EXP. 3	Preliminary values	Experimental values
IC50 Prod.A	300	87.74
IC50 Prod.B	300	729.82
f Ray 2	0.23	0.71
f Ray 3	0.50	0.89
f Ray 4	0.77	0.97

Shift to the domain where Prod.A is 3 times more represented than Prod.B

considering their relative potency

EXP. 1	Experimental f values	Ki values and 95%Cl	Conclusion
Ray 2	0.06	0.6585 [0.4641; 0.8528] (*)	Synergy
Ray 3	0.17	0.6756 [0.4802; 0.8709] (*)	Synergy
Ray 4	0.40	0.5702 [0.3656; 0.7748] (*)	Synergy
Ray 5	0.67	0.4865 [0.2316; 0.7414] (*)	Synergy
Ray 6	0.86	0.8006 [0.1445; 1.4568] (NS)	Additivity

(*): K is significantly different from 1 at 0.05 level

NS: Non significant

L'essentiel c'est la santé.

EXP. 2	Experimental f values	Ki values and 95%Cl	Conclusion
Ray 2	0.20	0.9441 [0.7094; 1.1788] (NS)	Additivity
Ray 3	0.45	0.6906 [0.4794; 0.9018] (*)	Synergy
Ray 4	0.73	0.5987 [0.3731; 0.8243] (*)	Synergy
Ray 5	0.89	0.6891 [0.3615; 1.0166] (NS)	Additivity
Ray 6	0.96	0.8523 [0.3127; 1.3918] (NS)	Additivity

(*): K is significantly different from 1 at 0.05 level

NS: Non significant

17

L'essentiel c'est la santé.

EXP. 3	Experimental f values	Ki values and 95%Cl	Conclusion
Ray 2	0.71	0.5746 [0.2503; 0.8989] (*)	Synergy
Ray 3	0.89	0.6770 [0.1806; 1.1734] (NS)	Additivity
Ray 4	0.97	0.9226 [0.2104; 1.6348] (NS)	Additivity

(*): K is significantly different from 1 at 0.05 level NS: Non

NS: Non significant

Summary of the experimental f values and associated conclusions : synergy (syn), additivity (add) or antagonism (ant)

Experimental f values				
EXP.1	EXP.2	EXP.3		
0.06 (syn)	0.20 (add)	0.71 (syn)		
0.17 (syn)	0.45 (syn)	0.89 (add)		
0.40 (syn)	0.73 (syn)	0.97 (add)		
0.67 (syn)	0.89 (add)			
0.86 (add)	0.96 (add)			

- For these three experiments, synergy between Prod.A and Prod.B is observed in the three first quarters of the domain (except for Exp2, f=0.20)
- Additivity between Prod.A and Prod.B is observed for higher f values
- On the tested rays, 'synergistic' domain : relative concentrations of Prod.A and Prod.B so that Prod.A is never more than 3 times more represented than Prod.B considering their relative potency

sanofi aventis

L'essentiel c'est la santé.

Ray design modeling methodology -Pros & cons

Adapted to the biological mechanism of synergy by:

- taking into account the relative proportions of products
- allowing to consider the specificity of each ray
- Less trial- and time-consuming than full designs like grid designs
- Permit an accurate research of the synergy zone based on the proportion condition of the two compounds
- Can be only applied on in-vitro multiple-dose experiments with at least 6-7 different doses by ray
- Require a good knowledge of the studied products : accurate products IC50s, max and min effects estimations

sanofi aventis

L'essentiel c'est la santé.

Adequacy between the expected and observed zone is very sensitive to the reproducibility of the assay → Robustness of the methodology to be evaluated

- BERENBAUM M. C. : What is Synergy. Pharmacological Reviews June 1989 Vol. 41 No.
- GRECO W. R., Bravo G., and Parsons J. C. : The Search for Synergy : A Critical Review from a Response Surface Perspective. Pharmacological Reviews – Vol 47, No 2 – 1995
- WHITE Donald B. : Nonlinear response surface and mixture experiment methodologies applied to the study of synergism – Biometrical Journal 46, 1, 56-71, 2004
- STRAETEMANS R., O'Brien T. : Design and Analysis of Drug Combination Experiments. Biometrical Journal – Vol 47, No 3 – 2005

