# Characterizing In vitro Synergy using the Ray design methodology 

Application to an Oncology combination study

Sophie Ruquet, Noëlle Boussac SANOFI-AVENTIS
NCSC 2010

## Outline

Synergy definition and Loewe additivity model

- Ray design methodology applied to an Oncology combination study
- Context and preliminary data
- Experimental ray design
- Statistical analysis and modeling
- Model fitting and results validation
- Conclusion

Ray design methodology: pros and cons

## Synergy - definition (1/2)

- Definition <pharmacology, physiology>: The interaction of two or more treatments such that their combined effect is greater than the sum of the individual effects observed when each treatment is administered alone
- Loewe additivity model (Loewe and Muischnek, 1926)
- Most suitable reference model
- Reasoning at fixed effect: in a synergistic mixture, lower concentrations of the two products are needed to obtain a given effect, in comparison with additive situation
- Equation for Loewe additivity model between products $A$ and $B$

$$
\frac{C_{A}}{I C_{X, A}}+\frac{C_{B}}{I C_{X, B}}=1
$$

- $C_{A}, C_{B}$ : concentrations of each product in the mixture necessary to obtain $X \%$ of effect
- $\mathrm{IC}_{X, A}, \mathrm{IC}_{X, B}$ : concentrations of products $A$ and $B$ necessary to obtain X\% of effect for each product alone (often relative IC50, concentration to obtain $50 \%$ of the delta between the maximum and the minimum effects)


## Synergy - definition (2/2)

- The left-hand term $\mathrm{K}_{\mathrm{i}}=\frac{C_{A}}{I C_{X, A}}+\frac{C_{B}}{I C_{X, B}}$ of the equation is significantly:
- Inferior to 1 in case of synergy
- Superior to 1 in case of antagonism



## Study context and preliminary data

- Objective: study the In vitro combination of two anticancer agents, Prod.A and Prod.B, to detect their possible synergy on a given cancer cell line
- Parameter of interest: Percentage of inhibition of cancer cells growth
- Preliminary results on each product alone: relative IC50s, minimum and maximum concentrations

Product A: IC50=300nM
Min $=0.03 \mathrm{nM}$
Max=10000nM


Product B: IC50=300nM
Min=3nM
Max=10000nM


## Experimental Ray design (1/4)

- Each ray design contains at least 5 rays:
- Two rays corresponding to each product alone
- Other rays i consisting of couples of concentrations of products $A$ and $B$, in a given proportion $\mathrm{c}_{\mathrm{i}}=\mathrm{C}_{\text {Prod. }} / \mathrm{C}_{\text {Prod.A }}$, constant for each ray
- Each couple of concentrations in duplicates, at least 6-7 successive dilutions by ray within the minimum and maximum concentrations range of each product
- The synergy zone is covered in a symmetric way from the equipotent ray, where $\mathrm{c}_{\mathrm{i}}=\mathrm{IC} 50_{\text {Prod.B }} / \mathrm{IC} 50_{\text {Prod.A }}$ and products are equally represented considering their respective potency
- At least three independent experiments (3 Ray designs) performed to ensure robustness of results


## Experimental Ray design (2/4)

- For each ray, each proportion $c_{i}=C_{\text {Prod. }} / C_{\text {Prod.A }}$ translated into unit of effect of each product alone considering their respective IC50s' values, using the effective fraction
$\mathrm{f}: \mathrm{f}_{\mathrm{i}}=\frac{1}{\mathrm{c}_{\mathrm{i}} \rho+1}$ where $\rho=\frac{I C 50_{\text {Prod.A }}}{I C 50_{\text {Prod.B }}}$ is the relative potency of the two products
- Ex1: $f=0.5$, effective equipotent ray ( $f \varepsilon] 0,1[$ )
- Ex2: $f=0.75$, ray where Prod.A is 3 times more represented than Prod.B considering their relative potency, also called ray « 3 for 1 »
- In the study, $\rho=\frac{300 \mathrm{nM}}{300 \mathrm{nM}}=1$


Conc. Drug 1

- With 5 rays, taking the two products alone and 3 rays with $f=0.75$ (ray 3 for 1 ), $f=0.5$ (equipotent ray) and $f=0.25$ (ray 1 for 3 ) permits to cover equally all the synergy zone


## Experimental Ray design (3/4)

## Example: Ray design for Experiment 1 (concentrations in nM)

Ray 1 : Product A alone

| Mixture | 1000 | 300 | 100 | 30 | 10 | 3 | 1 | 0.3 | 0.1 | 0.0 <br> 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 1000 | 300 | 100 | 30 | 10 | 3 | 1 | 0.3 | 0.1 | 0.0 <br> 3 |
| Prod.B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Ray 2 (1 for 30, f=0.03) :
300nM (Prod.A) + 10000nM (Prod.B)

| Mixture | 21000 | 10300 | 3100 | 1030 | 310 | 103 | 31 | 10. <br> 3 | 3.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 1000 | 300 | 100 | 30 | 10 | 3 | 1 | 0.3 | 0.1 |
| Prod.B | 20000 | 10000 | 3000 | 1000 | 300 | 100 | 30 | 10 | 3 |

Ray 3 (1 for $10, f=0.09$ ) :
300nM (Prod.A) +3000 nM (Prod.B)

| Mixture | 10100 | 3300 | 1100 | 330 | 110 | 33 | 11 | 3.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 1000 | 300 | 100 | 30 | 10 | 3 | 1 | 0.3 |
| Prod.B | 10000 | 3000 | 1000 | 300 | 100 | 30 | 10 | 3 |

## Experimental Ray design (4/4)

Ray 4 (1 for $3, f=0.25$ ):
300nM (Prod.A) +1000 nM (Prod.B)

Ray 5 (1 for $1, \mathrm{f}=0.50$ ):
300nM (Prod.A) +300 nM (Prod.B)

Ray 6 (3 for 1, $\mathrm{f}=0.75$ ) :
1000nM (Prod.A) + 300nM (Prod.B)

Ray 7 : Product B alone

| Mixture | 4000 | 1300 | 400 | 130 | 400 | 13 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 1000 | 300 | 100 | 30 | 10 | 3 | 1 |
| Prod.B | 3000 | 1000 | 300 | 100 | 30 | 10 | 3 |


| Mixture | 2000 | 600 | 200 | 60 | 20 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 1000 | 300 | 100 | 30 | 10 | 3 |
| Prod.B | 1000 | 300 | 100 | 30 | 10 | 3 |


| Mixture | 1300 | 400 | 130 | 40 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 1000 | 300 | 100 | 30 | 10 |
| Prod.B | 300 | 100 | 30 | 10 | 3 |


| Mixture | 20000 | 10000 | 3000 | 1000 | 300 | 100 | 30 | 10 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Prod.A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Prod.B | 20000 | 10000 | 3000 | 1000 | 300 | 100 | 30 | 10 | 3 |

## Statistical analysis of the Ray design

- For each experiment, global modelling of all rays together, each ray following a 4-parameter concentration-effect (inhibition) logistic curve
- For each experiment and from this global model:
- Estimation of the experimental values of the IC50s of Prod.A and Prod.B alone
- Estimation of the experimental values of «f"
- Estimation of the Loewe additivity index $\mathrm{K}_{\mathrm{i}}$ for each ray $\mathrm{i}(\mathrm{i}=2 . .6)$


## Modeling the Ray design

## - Concentration-effect model

- A 4-parameter logistic model for each ray:

- Generalization to all rays $\mathrm{i}, \mathrm{i}=1, \ldots, 5$ with different parameters Emax, Emin, m, IC50 for each ray:

$$
\text { Global model: } \quad \mathrm{E}[\mathrm{Y}]=\operatorname{Emin}_{\mathrm{i}}+\frac{\operatorname{Emax}_{\mathrm{i}}-\operatorname{Emin}_{\mathrm{i}}}{1+\exp \left(-\mathrm{m}_{\mathrm{i}} \ln \left(\frac{\text { Conc }_{\mathrm{i}}}{\mathrm{IC} 50_{\mathrm{i}}}\right)\right)}
$$

## Measurement of interaction between drugs (1/2)

${ }^{-} \mathrm{K}_{\mathrm{i}}$ value, $\mathrm{i}=2,3,4$, permits to measure the relationship (additivity, antagonism or synergy) between the 2 tested products A and B for Ray i:

$$
K_{i}=\frac{I C 50_{i}\left(I C 50_{A}+c_{i} I C 50_{B}\right)}{I C 50_{A} I C 50_{B}\left(1+c_{i}\right)}
$$

where

- $c_{i}=C_{B} / C_{A}$ for Ray $i$
- IC50 ${ }_{A}$, IC50 for product A alone (ray 1)
- IC50 ${ }_{B}$, IC50 for product B alone (ray 5)
- $I C 50_{i}$, with for rays $i=2, i=3$ and $\left.i=4, c_{i}=C_{B} / C_{A}\right\}$ global model


## Measurement of interaction between drugs (2/2)

- $\mathrm{K}_{\mathrm{i}}$ value is obtained with its corresponding CI95\%
- $\mathrm{K}_{\mathrm{i}}$ value is significantly:
- Equal to 1 in case of additivity (CI95\% contains '1')
- Inferior to 1 in case of synergy (CI95\% is strictly inferior to ' 1 ')
- Superior to 1 in case of antagonism (Cl95\% is strictly superior to ' 1 ')

Emin ${ }_{\mathrm{i}}$, Emax $_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}, \mathrm{IC} 50_{\mathrm{i}}$ and $\mathrm{K}_{\mathrm{i}}$ estimates are obtained with NLMixed procedure

## Fitting the global concentration-effect model

- NLMixed SAS software procedure
- Parameters initialization: use of estimations of parameters obtained from the fitting of each curve separately
- For each experiment, simultaneous estimation of adjusted curves parameters: $\mathrm{Emin}_{\mathrm{i}}, \mathrm{Emax}_{\mathrm{i}}$, IC $\mathrm{FO}_{\mathrm{i}}$, slope $\mathrm{m}_{\mathrm{i}}$ and $\mathrm{K}_{\mathrm{i}}$ with $\mathrm{i}=1, \ldots, 5$
- Selection of the best model
- First step: full model with $E_{m i n}^{i}$, Emax $_{i}$ and $m_{i}$ specific to each ray
- Second step: for this model, test of equality of the parameters Emin ${ }_{i}, E^{-m a x}{ }_{i}$ and $m_{i}$ for all rays
- Third step: new model in which the previously significant parameter(s) is(are) considered common to all rays


## Results validation

| EXP. 2 | Preliminary <br> values | Experimental <br> values |
| :--- | ---: | ---: |
| IC50 <br> Prod.A | 300 | 200.23 |
| IC50 <br> Prod.B | 300 | 165.80 |
| f Ray 2 | 0.23 | 0.20 |
| f Ray 3 | 0.50 | 0.45 |
| f Ray 4 | 0.77 | 0.73 |
| f Ray 5 | 0.91 | 0.89 |
| f Ray 6 | 0.97 | 0.96 |

Conclusion domain similar to the expected one

| EXP. 1 | Preliminary <br> values | Experimental <br> values |
| :--- | ---: | ---: |
| IC50 <br> Prod.A | 300 | 106.78 |
| IC50 <br> Prod.B | 300 | 217.73 |
| f Ray 2 | 0.03 | 0.06 |
| f Ray 3 | 0.09 | 0.17 |
| f Ray 4 | 0.25 | 0.40 |
| f Ray 5 | 0.50 | 0.67 |
| f Ray 6 | 0.75 | 0.86 |

Right shift of the conclusion domain, $f$ values higher than expected

| EXP. 3 | Preliminary <br> values | Experimental <br> values |
| :--- | ---: | ---: |
| IC50 <br> Prod.A | 300 | 87.74 |
| IC50 <br> Prod.B | 300 | 729.82 |
| f Ray 2 | 0.23 | 0.71 |
| f Ray 3 | 0.50 | 0.89 |
| f Ray 4 | 0.77 | 0.97 |

Shift to the domain where Prod.A is 3 times more represented than Prod.B considering their relative potency

## Statistical results: Experiment 1



| EXP. 1 | Experimental <br> f values | Ki values and 95\%CI | Conclusion |
| :---: | :---: | :---: | :---: |
| Ray 2 | 0.06 | $0.6585[0.4641 ; 0.8528]\left({ }^{*}\right)$ | Synergy |
| Ray 3 | 0.17 | $0.6756[0.4802 ; 0.8709]\left({ }^{*}\right)$ | Synergy |
| Ray 4 | 0.40 | $0.5702[0.3656 ; 0.7748]\left({ }^{*}\right)$ | Synergy |
| Ray 5 | 0.67 | $0.4865[0.2316 ; 0.7414]\left({ }^{*}\right)$ | Synergy |
| Ray 6 | 0.86 | $0.8006[0.1445 ; 1.4568](\mathrm{NS})$ | Additivity |

$\left(^{*}\right): \mathrm{K}$ is significantly different from 1 at 0.05 level NS: Non significant

## Statistical results: Experiment 2



| EXP. 2 | Experimental <br> f values | Ki values and 95\%Cl | Conclusion |
| :---: | :---: | :---: | :---: |
| Ray 2 | 0.20 | $0.9441[0.7094 ; 1.1788](\mathrm{NS})$ | Additivity |
| Ray 3 | 0.45 | $0.6906[0.4794 ; 0.9018](*)$ | Synergy |
| Ray 4 | 0.73 | $0.5987[0.3731 ; 0.8243](*)$ | Synergy |
| Ray 5 | 0.89 | $0.6891[0.3615 ; 1.0166](\mathrm{NS})$ | Additivity |
| Ray 6 | 0.96 | $0.8523[0.3127 ; 1.3918](\mathrm{NS})$ | Additivity |

[^0]
## Statistical results: Experiment 3



| EXP. 3 | Experimental <br> f values | Ki values and 95\%CI | Conclusion |
| :---: | :---: | :---: | :---: |
| Ray 2 | 0.71 | $0.5746[0.2503 ; 0.8989]\left({ }^{*}\right)$ | Synergy |
| Ray 3 | 0.89 | $0.6770[0.1806 ; 1.1734](\mathrm{NS})$ | Additivity |
| Ray 4 | 0.97 | $0.9226[0.2104 ; 1.6348](\mathrm{NS})$ | Additivity |

$\left(^{*}\right): \mathrm{K}$ is significantly different from 1 at 0.05 level
NS: Non significant

## Global conclusion

- Summary of the experimental f values and associated conclusions : synergy (syn), additivity (add) or antagonism (ant)

| Experimental f values |  |  |
| :--- | :--- | :--- |
| EXP.1 | EXP.2 | EXP.3 |
| $\mathbf{0 . 0 6}($ syn $)$ | $0.20($ add $)$ | $\mathbf{0 . 7 1}$ (syn) |
| $\mathbf{0 . 1 7}($ syn) | $\mathbf{0 . 4 5}$ (syn) | $0.89($ add $)$ |
| $\mathbf{0 . 4 0}$ (syn) | $\mathbf{0 . 7 3}$ (syn) | $0.97($ add $)$ |
| $\mathbf{0 . 6 7}($ syn) | $0.89($ add $)$ |  |
| $0.86($ add $)$ | $0.96($ add $)$ |  |

- For these three experiments, synergy between Prod.A and Prod.B is observed in the three first quarters of the domain (except for Exp2, $f=0.20$ )
- Additivity between Prod.A and Prod.B is observed for higher f values
- On the tested rays, 'synergistic' domain : relative concentrations of Prod.A and Prod.B so that Prod.A is never more than 3 times more represented than Prod.B considering their relative potency


## Ray design modeling methodology Pros \& cons

- Adapted to the biological mechanism of synergy by:
- taking into account the relative proportions of products
- allowing to consider the specificity of each ray
- Less trial- and time-consuming than full designs like grid designs
- Permit an accurate research of the synergy zone based on the proportion condition of the two compounds
- Can be only applied on in-vitro multiple-dose experiments with at least 6-7 different doses by ray
- Require a good knowledge of the studied products : accurate products IC50s, max and min effects estimations
- Adequacy between the expected and observed zone is very sensitive to the reproducibility of the assay $\rightarrow$ Robustness of the methodology to be evaluated


## Bibliography

- BERENBAUM M. C. : What is Synergy. Pharmacological Reviews June 1989 Vol. 41 No.
- GRECO W. R., Bravo G., and Parsons J. C. : The Search for Synergy : A Critical Review from a Response Surface Perspective. Pharmacological Reviews - Vol 47, No 2 - 1995
- WHITE Donald B. : Nonlinear response surface and mixture experiment methodologies applied to the study of synergism Biometrical Journal 46, 1, 56-71, 2004
- STRAETEMANS R., O'Brien T. : Design and Analysis of Drug Combination Experiments. Biometrical Journal - Vol 47, No 3 2005


[^0]:    (*): K is significantly different from 1 at 0.05 level
    NS: Non significant

