

Prediction of tumor class from gene expression data using bagged decision trees

Ascension Vizinho-Coutry, avizinho@mathworks.fr MathWorks France

Non-Clinical Statistics 2010 Conference

Agenda

- Introduction:
 - Benefits of multivariate classification
 - Overview of multivariate classification capabilities in Statistics Toolbox[™]
- Tumor classification using gene expression data
 - Context (paper Khan et al.)
 - Bagged decision trees
 - Results
- Conclusion

Benefits of Multivariate Classification

- Classification methods help us to answer questions such as:
 - Are there subgroups in my dataset?
 - What are the similarities and differences between the groups?
 - Are the differences large enough that I can clearly discriminate between the groups, and predict what the group of a new observation is?
 - What variables explain the group differences?

Benefits of Multivariate Classification

- Multivariate methods help to:
 - Simplify complex relationships between many variables
 - Find differences between groups that depend on the *correlations* between variables
 - Reduce the Type I errors associated with large numbers of univariate hypothesis tests

Multivariate Classification in Statistics Toolbox™

- Classification Algorithms
 - Linear and Quadratic Discriminant Analysis
 - Decision Trees

✓ The MathWorks[™]

- Naïve Bayes R2009a
- Bagged Decision Trees R2009a R2009b
- Feature Selection Algorithms
 - Sequential Forward and Backward Feature Selection R2008a
- Model Selection and Evaluation Methods
 - Cross Validation R2008a R2008b R2009b
 - Confusion Matrices R2008b
 - ROC Performance Curves R2009a

(error)

Cost

Related functionality in other toolboxes

- Neural Networks Toolbox[™]
 - Neural network-based pattern recognition
- Bioinformatics Toolbox[™]
 - Support Vector Machines
 - K-nearest neighbours
 - Feature ranking, randomized feature selection
- Fuzzy Logic Toolbox[™]
 - Fuzzy classification methods
- Genetic Algorithms Toolbox[™]
 - GA-based feature selection

Tumor Classification using Gene Expression Data and Bagged Decision Trees

- Small, round blue-cell tumors (SRBCTs) belong to four distinct diagnostic categories:
 - neuroblastoma (NB),
 - rhabdomyosarcoma (RM),
 - Ewing family of tumors (EW), and
 - non-Hodgkin lymphoma, of which Burkitt
 lymphoma (BL) is a subset

Malignant B-cell lymphocytes seen in Burkitt's lymphoma Image credit: Louis M. Staudt, National Cancer Institute

- Accurate diagnosis is vital, leading to wide variation in treatment options and prognosis
- Difficult to distinguish by light microscopy
 - currently diagnosed by a combination of immunohistochemistry, cytogenetics, interphase fluorescence *in situ* hybridisation, and RT-PCR

Tumor Classification using Gene Expression Data and Bagged Decision Trees

- Gene expression profiling with cDNA microarrays permits the measurement of multiple markers simultaneously
- But: gives rise to very large amounts of data, and requires multivariate methods to analyse
- Khan et al. used a neural network approach here we use bagged decision trees

cDNA microarray, profiling expression levels of 8,700 genes Image credit: Dr Jason Kang, National Cancer Institute

Khan J *et al.*, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. *Nature Medicine* 7(6), 673-9, 2001

Bagged Decision Trees

- Bagged Decision Trees are constructed using two algorithms
 - An underlying decision tree classification algorithm
 - Takes a training dataset of pre-classified examples as input, and constructs a decision tree model that classifies future examples
 - A bagging (bootstrap aggregation) algorithm
 - Resamples the training dataset several times (bootstrapping), and builds a model from each; then aggregate these models together for a final classifier

- 3 if Gene 4<1.75 then node 4 else node 5
- 4 if Gene 3<4.95 then node 6 else node 7
- 5 class = Cell Type 3
- 6 if Gene 4<1.65 then node 8 else node 9
- 7 class = Cell Type 3
- 8 class = Cell Type 2
- 9 class = Cell Type 3

Data

- 88 samples divided into a training set of 63 samples and a test set of 25 samples.
- Each sample is supplied with expression profiles of 2308 genes, collected using cDNA microarrays.
- The class of tumor to which the samples belong is also provided.

✓ The MathWorks[™]

Approach based on the Tree Bagged Decision method

1- Pre-study

- Take only 100 trees
- Compare actual classes to predicted classes

	EW	BL	NB	RM
EW	23	0	0	0
BL	0	8	0	0
NB	0	0	12	0
RM	0	0	0	20

- Confidence on predicted classes
- Satisfactory results with out-of-bags samples (obtained from resampled dataset not used for model building)

Training

- Use Parallel Computing to select top variables because of permutation tests on out-of-bags variables
- Training using the 25 selected variables with 500 trees

Evaluation

 Test using additional samples NA completely different

	NB	EW	NA	RM	BL
NB	6	0	0	0	0
ΕW	0	5	0	1	0
NA	1	1	0	3	0
RM	0	1	0	4	0
BL	0	0	0	0	3

Summary and Conclusion

- Bagged Decision Trees helped us to:
 - Build an accurate model to diagnose SRBCT class
 - Select a subset of important variables that could be taken forward into a custom assay
 - Provide class probabilities, not just hard classifications
- Confusion matrices, Performance Curves
 - Helped to evaluate models
- Integration with Parallel Computing Toolbox[™]
 - Accelerated computationally intensive learning tasks with large datasets

Thank you for listening

- For more information
 - Life Science applications:
 - http://www.mathworks.com/industries/biotech/
 - Statistics Toolbox[™]
 - http://www.mathworks.com/products/statistics/
 - Parallel Computing Toolbox[™]
 - http://www.mathworks.com/products/parallel-computing/