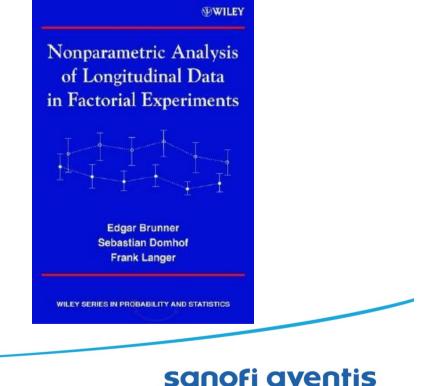
Anova-Type Statistics,

a good alternative to parametric methods for analyzing repeated data from preclinical experiments

Odile Coudert Berthion (Keyrus Biopharma) Véronique Onado and Guy Mathieu (Sanofi-Aventis)

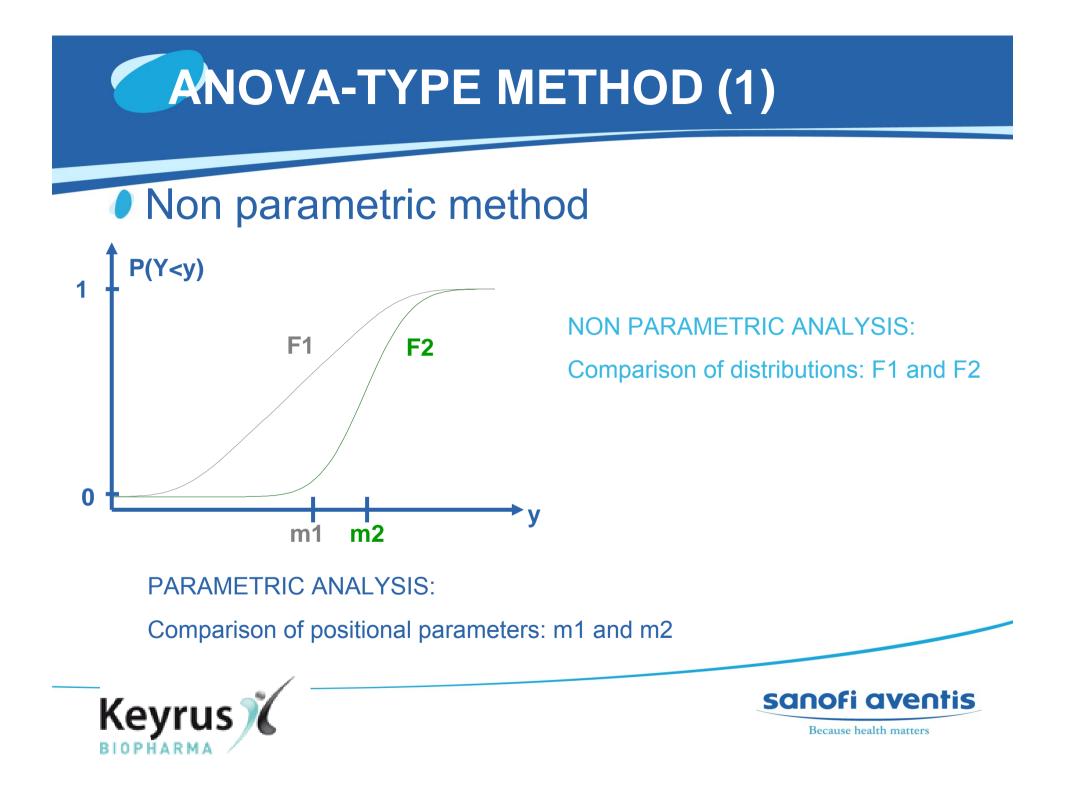


INTRODUCTION

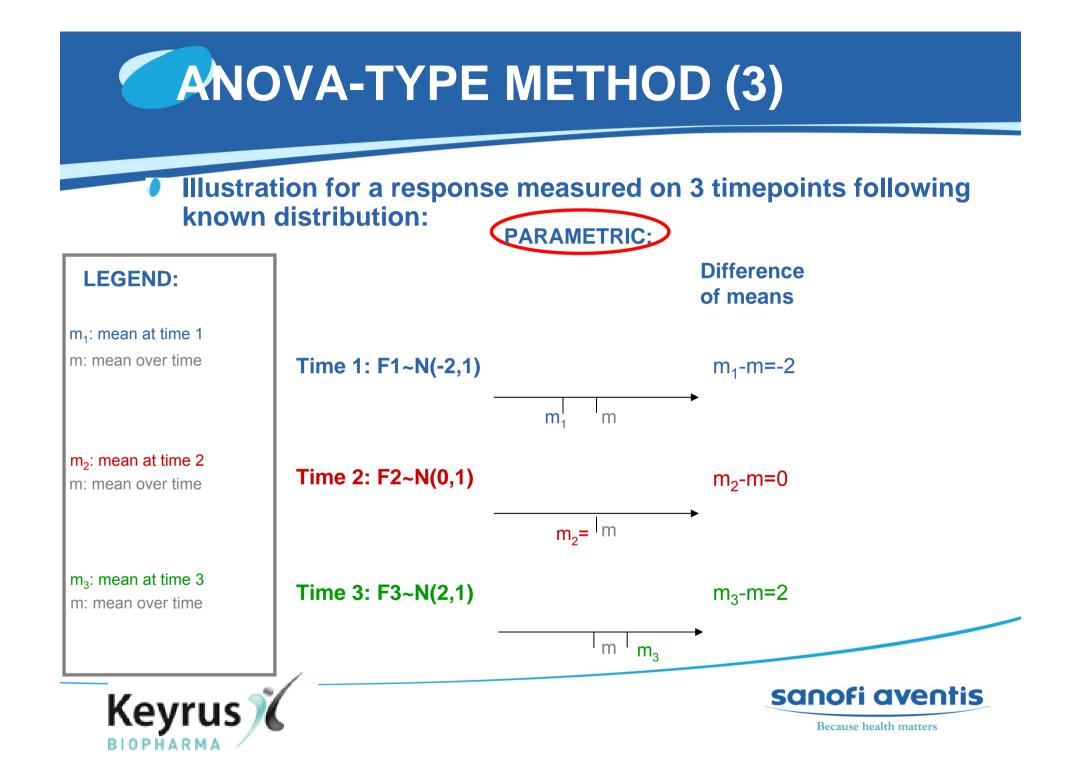
In preclinical field:

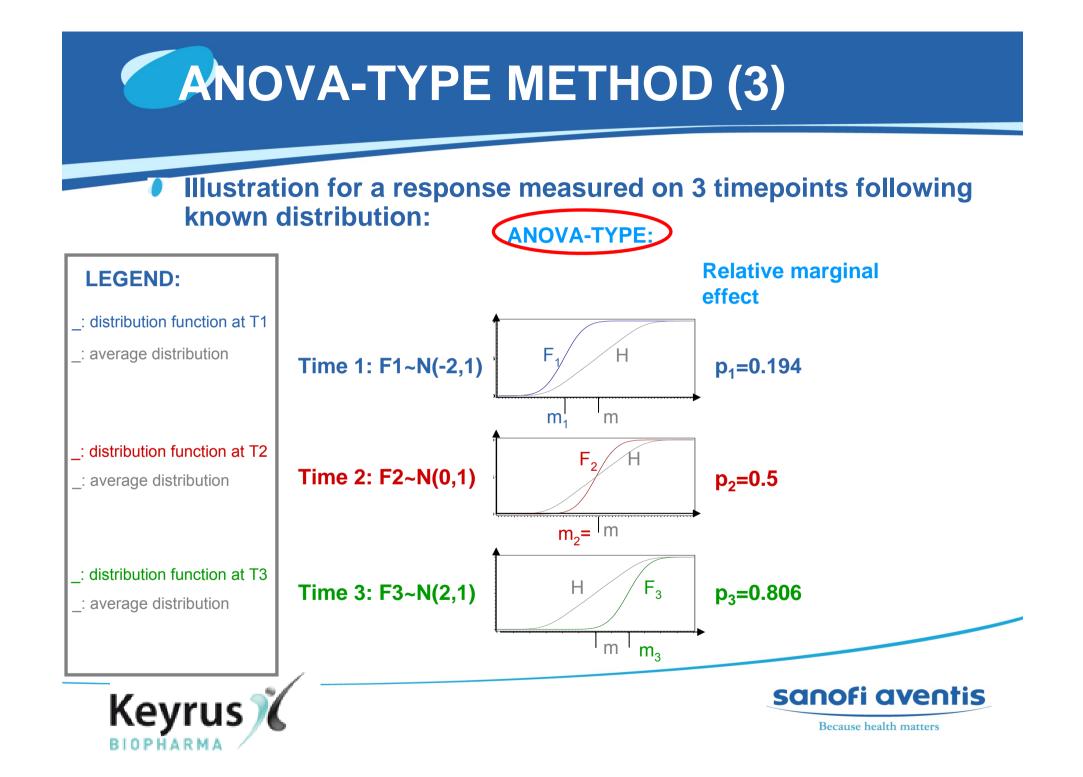
- Frequent departure from hypotheses required by parametric analyses
 - **I** Normal distribution
 - Variances homogeneity
- Small sample size
- Repeated design
- Analyzing data = challenge

 A solution for some classical design: Anova-type statistics


Because health matters

- Anova-Type Method
- Simulation results
- Conclusion





- Distribution functions of the response variable: $F_{11} \dots F_{it} \dots F_{aT}$
 - Group: i=1...a
 - Time: t=1...T
- Null hypothesis: H0: CF=0
 - C: Contrast matrix
 - F=(F_{it}): Vector of distribution
- Weighted average of all the F_{it} : H=1/N $\sum_{i} \sum_{t} n_{i} F_{it}$
- Relative marginal effect: $p_{it} = \int H dF_{it}$
 - Ranks are used for estimating the p_{it} : $\hat{p}_{it} = \frac{1}{N} \left(\overline{R}_{it} \frac{1}{2} \right)$
 - Themselves used for testing the null hypotheses

ANOVA-TYPE METHOD (4)

Test of H0: CF=0

- Anova Type Statistic: $F_n(C) = \frac{n}{tr(C'[CC'] C \hat{V}_n)} \hat{p}'C'[CC'] C \hat{p}$
 - C: contrast matrix
 - \hat{p} : vector of estimated relative marginal effects
 - V_n : estimated covariance matrix
- F_n(C) ~>Fisher(DFnum,DFden)
 - » DFden= ∞
 - » When C does not depend on the repeated factor, Box approximation for DFden
- The covariance matrix is allowed to be singular since only its trace is used.

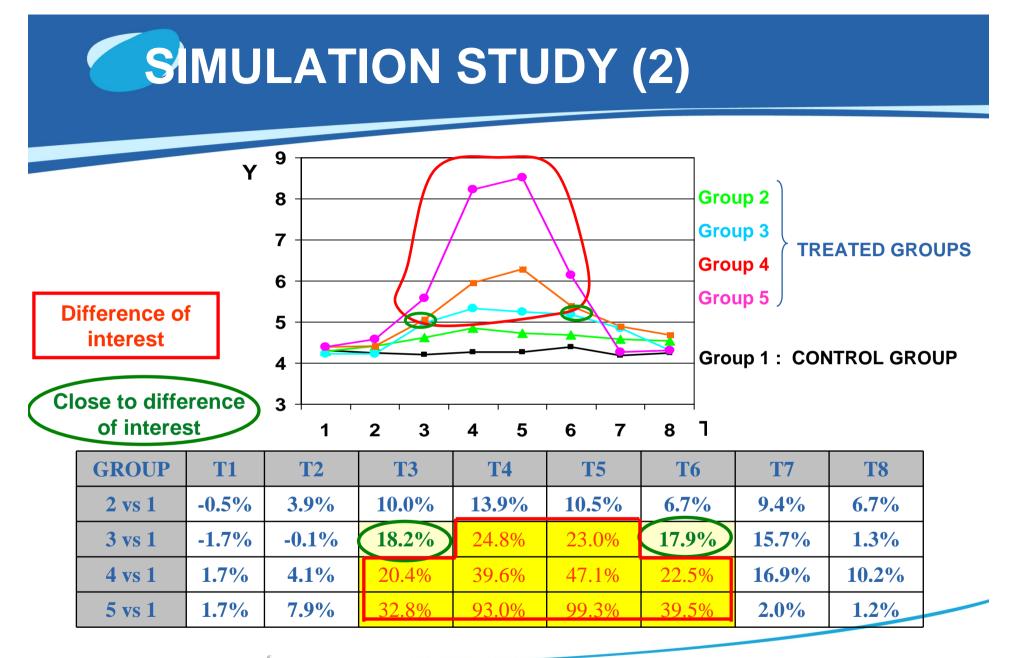
ANOVA-TYPE METHOD (5)

SAS implementation: Proc rank Estimation of the Followed by proc mixed: covariance matrix Anova-Type Statistics and pvalues proc mixed data=dataset(ANOVAF)(METHOD=MIVQUE0) class Time Treatment id; model **RANK** = Time Treatment Time* Treatment / ddfm=kr; repeated Time / subject=id(Treatment); **Contrast** "Comparison" /; run; For obtaining non-parametric tests for factors levels comparisons sanofi aventis Keyrus

Anova-Type main advantages:

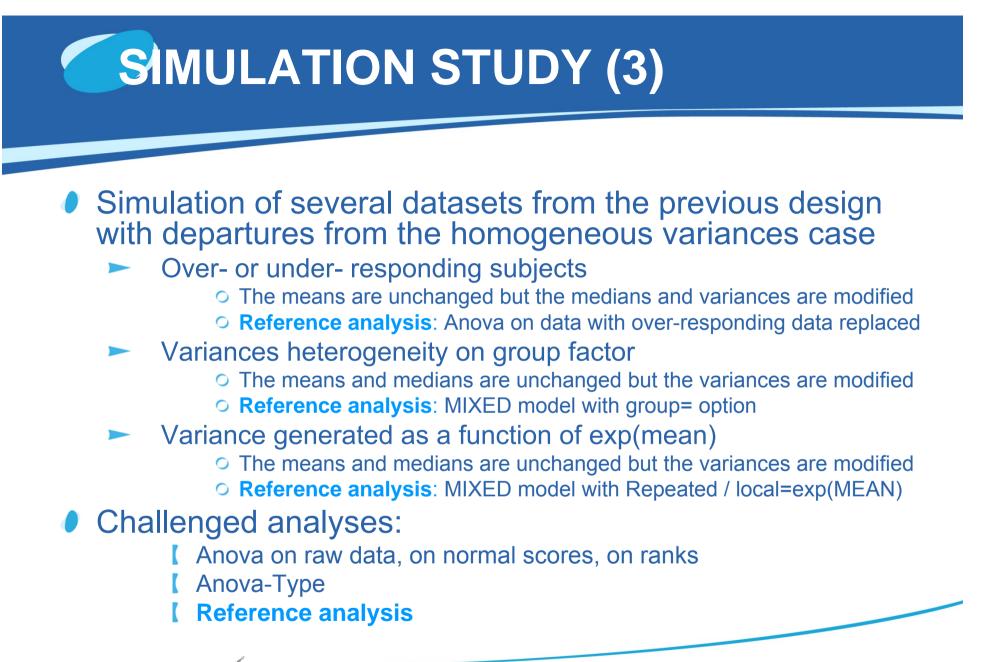
- Easy implementation under SAS software
- No underlying hypothesis on the response distribution function (shape, variability...)
- It is allowed to have no variability in some groups
 - The covariance matrix being allowed to be singular

sanofi aventis Because health matters


SIMULATION STUDY (1)

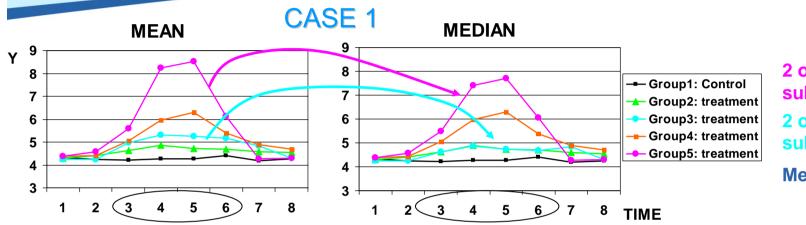
Design:

- 5 groups;
 - **group1**=control group;
 - group2, group3, group4, group5= treated groups
- 10 animals by group;
- 8 times of measurements (repeated measures)
- Homogeneous variances case:
 - Standard deviation chosen so that a difference of 20% of the control group should be significant with 80% power and 5% alpha.



Because health matters

sanofi aventis


SIMULATION STUDY (4)

- Power: probability to reject H0 when H1 is true
 - Simulation of datasets with:
 - I Difference of interest between the groups
 - Variances heterogeneity
 - For each comparison, the power is estimated as the proportion of significant p-values among all 1000 simulations.
- Alpha risk: probability to reject H0 when H0 is true
 - Simulation of datasets with:
 - **NO** difference between the groups
 - Variances heterogeneity
 - The alpha risk is globally estimated for all comparisons as the proportion of the simulations with at least one significant difference among all 1000 simulations.

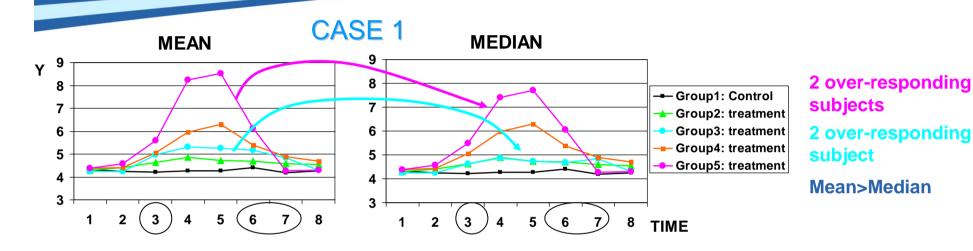
Simulation of samples with over/under responding subjects (1)

2 over-responding subjects 2 over-responding subject

Mean>Median

POWER of the comparison GROUP3 vs GROUP1

METHOD	T3	T4	T5	T 6
RAW DATA	22%	67%	56%	25%
NORMAL SCORES	35%	63%	48%	21%
RANKS	33%	59%	40%	17%
ANOVA-TYPE	44%	71%	50%	26%
REFERENCE	7%	20%	8%	2%


All analyses are too powerful in comparison with the reference analysis

Anova on data with over-responding data replaced

Simulation of samples with over/under responding subjects (2)

POWER of the comparison GROUP4 vs GROUP1

METHOD	T3	T6	T7	
RAW DATA	36%	58%	18%	
NORMAL SCORES	78%	83%	62%	
RANKS	84%	91%	69%	
ANOVA-TYPE	86%	92%	70%	
REFERENCE	84%	94%	66%	

Analysis on raw data is not powerful enough

Anova on data with over-responding data replaced

Simulation of samples with over/under responding subjects (3)

CASE 1

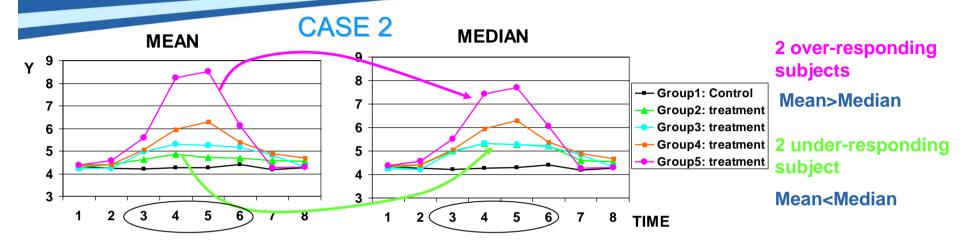
2 over-responding subjects in group 5 2 over-responding subject in group 3

Mean>Median

Alpha risk: probability that at least one comparison is significant

METHOD	T1	T2	Т3	T4	T5	T6	T7	T 8
RAW DATA	1%	1%	6%	47%	47%	12%	0%	0%
NORMAL SCORES	3%	3%	9%	14%	13%	6%	3%	4%
RANKS	4%	4%	9%	10%	9%	6%	4%	4%
ANOVA-TYPE	4%	4%	8%	10%	9%	6%	3%	4%
REFERENCE	6%	4%	4%	5%	5%	5%	4%	5%

Too conservative Too high


Good conservation

Anova on data with over-responding data replaced

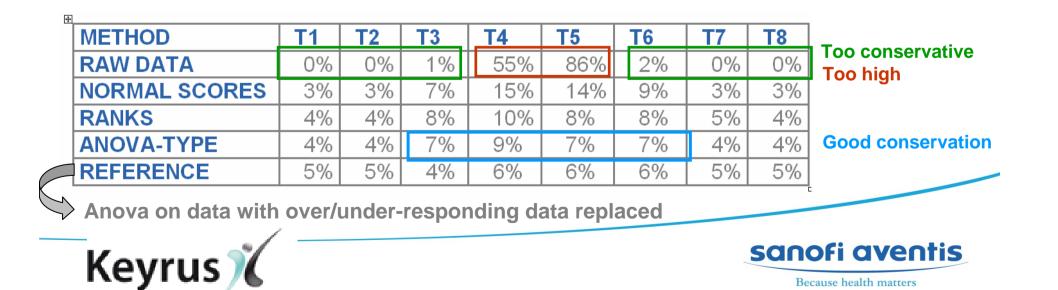
Simulation of samples with over/under responding subjects (4)

POWER of the comparison GROUP2 vs GROUP1

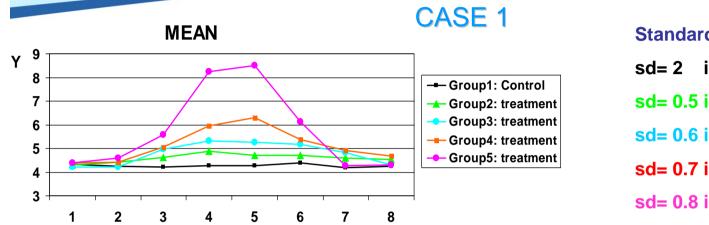
<u># </u>				
METHOD	Т3	T4	T5	T6
RAW DATA	3%	9%	2%	0%
NORMAL SCORES	19%	43%	26%	9%
RANKS	52%	80%	71%	42%
ANOVA-TYPE	69%	91%	86%	63%
REFERENCE	92%	100%	98%	93%

Anova-Type fits better than the other analyses to the reference analysis

Anova on data with over/under-responding data replaced


Simulation of samples with over/under responding subjects (5)

CASE 2


2 over-responding subjects in group 5 Mean>Median

2 under-responding subject in group 2 Mean<Median

Alpha risk: probability that at least one comparison is significant

Simulation of samples with variances heterogeneity on group factor (1)

Standard Deviation

- sd= 2 in Group 1
- sd= 0.5 in Group 2
- sd= 0.6 in Group 3
- sd= 0.7 in Group 4
- sd= 0.8 in Group 5

POWER of the comparison GROUP4 vs GROUP1

METHOD	T1	T2	Т3	T 4	T5	T6	T 7
RAW DATA	8%	10%	31%	79%	91%	39%	25%
NORMAL SCORES	5%	8%	35%	86%	95%	47%	25%
RANKS	6%	8%	30%	86%	95%	48 %	20%
ANOVA-TYPE	8%	9%	33%	88%	95%	52%	20%
REFERENCE	1%	3%	11%	52%	71%	16%	9%

All analyses are too powerful in comparison with the reference analysis

MIXED model with group= option

CASE 1

Standard Deviation sd= 2 in Group 1

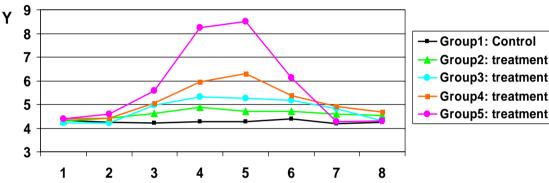
sd= 0.5 in Group 2; 0.6 in Group 3 ; 0.7 in Group 4; 0.8 in Group 5

ALPHA RISK: probability that at least one comparison is significant

METHOD	Minimum	Maximum		
RAW DATA	15%	18%		
NORMAL SCORES	8%	14%	-	
RANKS	9%	13%		
ANOVA-TYPE	8%	12%		
REFERENCE	3%	5%	-	

MIXED model with group= option

very high for analysis on raw data high for analyses on normal scores, ranks and Anova-Type


close to 5% for the reference analysis

Simulation of samples with variances heterogeneity on group factor (3)

CASE 2

MEAN

Standard Deviation

- sd= 0.4 in Group 1
- sd= 0.4 in Group 2
- sd=1 in Group 3
- sd= 1.5 in Group 4
- sd= 2 in Group 5

POWER of the comparison GROUP3 vs GROUP1

METHOD	Т3	T4	T5	Т6
RAW DATA	7%	21%	15%	7%
NORMAL SCORES	23%	43%	36%	13%
RANKS	40%	62%	56%	30%
ANOVA-TYPE	44%	72%	65%	35%
REFERENCE	42%	73%	66%	45%

MIXED model with group= option

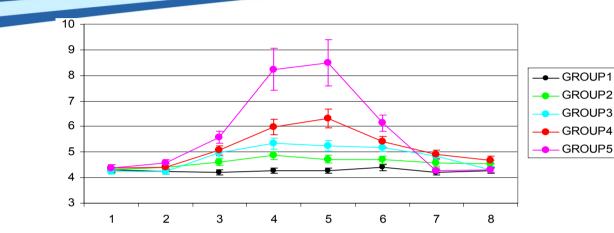
Anova-Type fits better than the other analyses to the reference analysis

CASE 2

Standard Deviation sd= 0.4 in Group 1

sd= 0.4 in Group 2; 1 in Group 3 ; 1.5 in Group 4; 2 in Group 5

ALPHA RISK: probability that at least one comparison is significant


METHOD	Minimum	Maximum
RAW DATA	4%	5%
NORMAL SCORES	2%	3%
RANKS	3%	4%
ANOVA-TYPE	3%	4%
REFERENCE	6%	7%

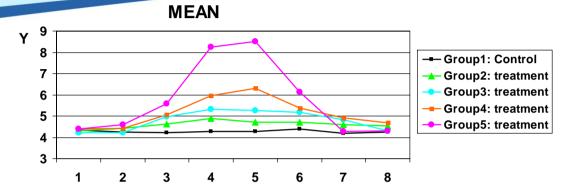
MIXED model with group= option

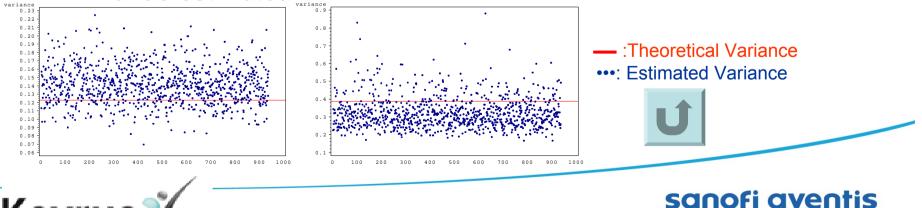
Simulation of samples with variances being exponential of the mean (1)

$$Var(Y) = \sigma^2 \exp[\gamma.Mean(y)]$$

POWER of the comparison GROUP2 vs GROUP1

METHOD	Т3	T4	Т5	Т6
RAW DATA	1%	10%	2%	0%
NORMAL SCORES	44%	64%	42%	16%
RANKS	56%	75%	54%	23%
ANOVA-TYPE	73%	88%	72%	41%
REFERENCE	45%	71%	44%	16%


MIXED model with Repeated / local=exp(MEAN) WARNING: Unaccurate variances estimations


Simulation of samples with variances being exponential of the mean (1bis)

$$Var(Y) = \sigma^2 \exp[\gamma.Mean(y)]$$

Because health matters

- Mixed model with variance modeled as a function of exp(mean): should be a reference analysis
 - Does is make good estimations of the variances for small samples?
 - NO: some of the variances are overestimated, the other are underestimated

No difference between the groups, but same variances heterogeneity as for the power study

ALPHA RISK: probability that at least one comparison is significant

METHOD	T1	T2	T 3	T4	T5	T6	T7	T8
RAW DATA	0%	0%	0%	32%	41%	0%	0%	0%
NORMAL SCORES	0%	1%	2%	13%	15%	4%	1%	1%
RANKS	1%	1%	4%	10%	9%	5%	2%	2%
ANOVA-TYPE	1%	1%	3%	10%	9%	5%	2%	2%

Very high variability: huge alpha risk for analysis on raw data

analysis on ranks and Anova-Type have the best alpha risk.

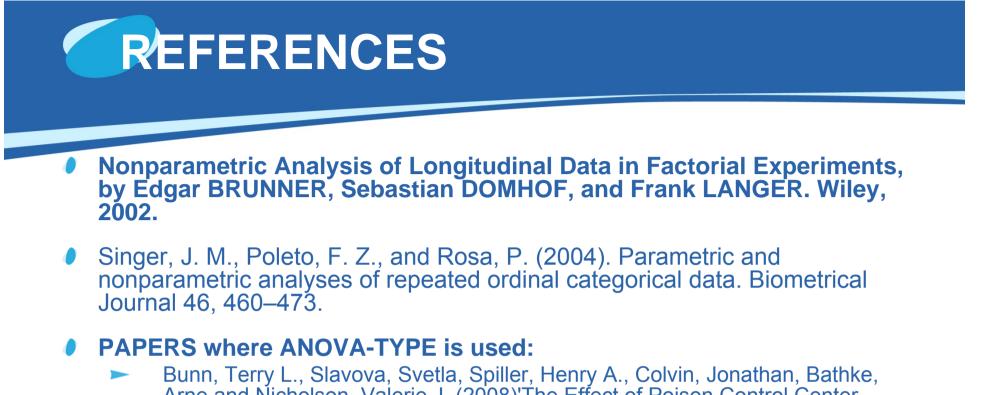
When the variability is small, analysis on raw data is too conservative

Sanofi aventis

When heterogeneity of variances corresponds to a group structure, it is better to use the SAS group= statement.

- When over- or under-responding subjects are present in the dataset, Anova-Type is the most appropriate method:
 - Good power
 - Good alpha risk conservation
- When heterogeneity of variances could be modeled using complex model, Anova-Type is a good answer for analyzing such data easily.

sanofi aventis Because health matters


CONCLUSION (2)

Case studies:

- Analysis of repeated discrete data
- Usual method:
 - Friedman test
 - Kruskal-Wallis test at each time
 - I Proportional odds models (genmod procedure)
- Anova-Type Statistics is an excellent solution:
 - No hypothesis on the shape of the data distribution
 - Enables the variances to be null for some factors levels
 - Very powerful for relevant differences

Sanofi aventis Because health matters

- Arne and Nicholson, Valerie J. (2008)'The Effect of Poison Control Center Consultation on Accidental Poisoning Inpatient Hospitalizations with Preexisting Medical Conditions, Journal of Toxicology and Environmental Health, Part A,71:4,283 - 288.
- Ciraulo, D.A., Hitzemann, R.J., Somoza, E., Knapp, C.M., Rotrosen, J., Sarid-Segal, O., Ciraulo, A.M, Greenblatt, D.J., Chiang, C.N. (2006). Pharmacokinetics and Pharmacodynamics of Multiple Sublingual Buprenorphine Tablets in Dose-Escalation Trials. J. Clin. Pharmacol., 46, 179
- odile.berthion@gmail.com

Sanofi aventis Because health matters