

OPTIMIZATION OF THE IRINOTECAN – EFFLUX TRANSPORTERS INHIBITOR COMBINATION FOR TREATING IRINOTECAN RESISTANT TUMOURS

<u>Alexandre SOSTELLY</u>, Léa PAYEN, Benjamin RIBBA, Attilio DI PIETRO, Pierre FALSON, Ahcène BOUMENDJEL, Gilles FREYER, Pascal GIRARD, Michel TOD

Outline

- Clinical issue
- Aims
- Animals
- Model Building
- Model Based Development
- Perspectives

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Clinical Issue

Multi-Drug Resistance

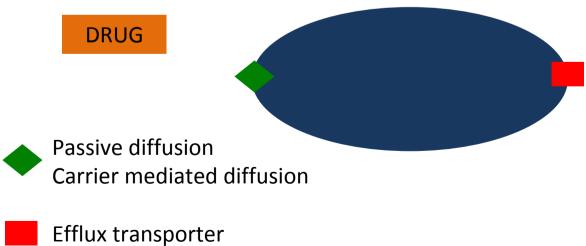
- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Clinical Issue

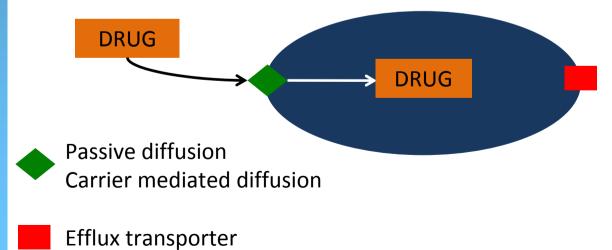
Multi-Drug Resistance

- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

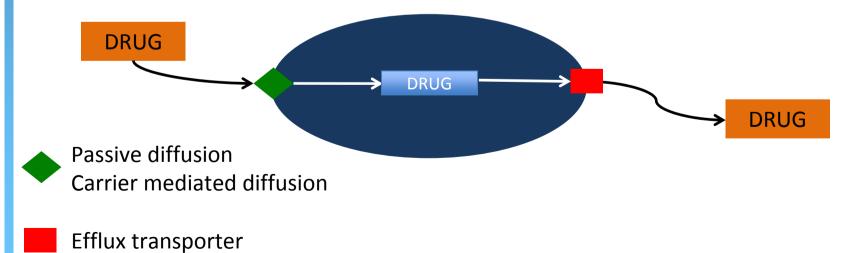

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

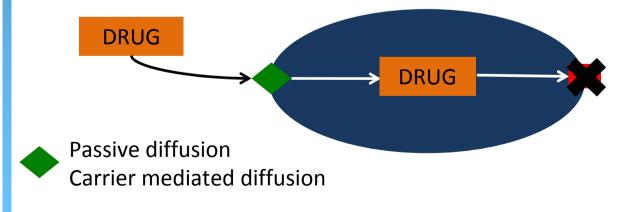

- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion


- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

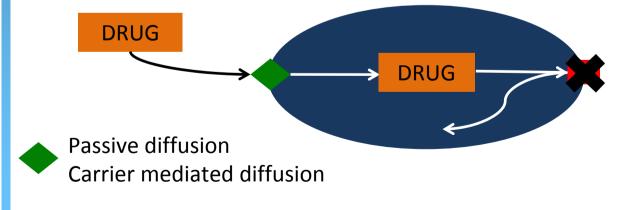
- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype


- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

• Mechanism:



Efflux transporter

- Efflux transporters:
 - Important role in drug absorption, distribution and drug resistance
 - Inhibition of efflux transporters could be useful for patients who expressed drug resistance phenotype

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

• Mechanism:

Efflux transporter

Clinical Issue *ABCG2-BCRP*

- ABCG2-Breast Cancer Resistance Protein (BCRP):
 - Efflux transporter discovered recently
 - Important transporter that effluxes a wide range of substrates (Mitoxantrone, Irinotecan, SN-38)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Clinical Issue ABCG2-BCRP

- ABCG2-Breast Cancer Resistance Protein (BCRP):
 - Efflux transporter discovered recently
 - Important transporter that effluxes a wide range of substrates (Mitoxantrone, Irinotecan, SN-38)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- One BCRP reference inhibitor: Gefitinib (Iressa®, AstraZeneca)
 - Not BCRP specific

Clinical Issue ABCG2-BCRP

- ABCG2-Breast Cancer Resistance Protein (BCRP):
 - Efflux transporter discovered recently
 - Important transporter that effluxes a wide range of substrates (Mitoxantrone, Irinotecan, SN-38)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- One BCRP reference inhibitor: Gefitinib (Iressa®, AstraZeneca)
 - Not BCRP specific

Development of new BCRP inhibitor Non toxic and more specific

- One acridone (A. BOUMENDJEL): as potent in vitro as Gefitinib¹
 - Able to inhibit BCRP mediated efflux (Mitoxantrone, Irinotecan)
 - With the advantage of not inhibiting other efflux transporters
 - Proof of concept in mice

Clinical Issue ABCG2-BCRP

- ABCG2-Breast Cancer Resistance Protein (BCRP):
 - Efflux transporter discovered recently
 - Important transporter that effluxes a wide range of substrates (Mitoxantrone, Irinotecan, SN-38)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- One BCRP reference inhibitor: Gefitinib (Iressa®, AstraZeneca)
 - Not BCRP specific

Development of new BCRP inhibitor Non toxic and more specific

- One acridone (A. BOUMENDJEL): as potent in vitro as Gefitinib¹
 - Able to inhibit BCRP mediated efflux (Mitoxantrone, Irinotecan)
 - With the advantage of not inhibiting other efflux transporters
 - Proof of concept in mice

MBLI-87

Aims

Optimizing a dose finding study

Optimizing the therapeutic regimen and effects of Irinotecan+MBLI-87 combination in mice

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Model Building

Based on animal data, develop a non linear mixed effects model for Irinotecan+MBLI-87 effects on tumour growth in ABCG2 resistant xenografts

Simulation Study

Based on previous model, develop a simulation analysis in order to select the best therapeutic regimen

Animals Proof of Concept Study Design

- Therapeutic regimen:
 - 1 cycle over 4 weeks: 2 weeks on + 2 weeks off
 - Mice received 2 chemotherapy cycles over 8 weeks

Arms	N	Dose
Control + Vehicle	18	-
Irinotecan	9	30 mg.kg ⁻¹
Gefitinib	6	75 mg.kg ⁻¹
MBLI-87	6	2.4 mg.kg ⁻¹
Irinotecan+Gefitinib	3	30 mg.kg ⁻¹ / 75 mg.kg ⁻¹
Irinotecan+MBLI-87	3	30 mg.kg ⁻¹ / 2.4 mg.kg ⁻¹
TOTAL	45	

Outline

Issue

Aims

Animals

Model Building

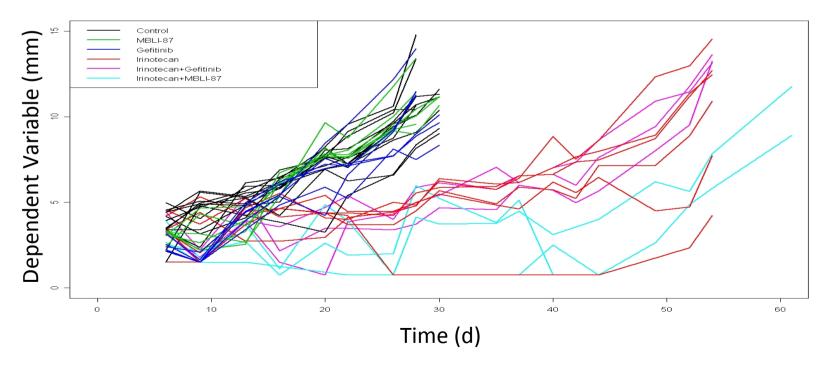
MBD

Discussion

Animals *Data*

- 2 tumours implanted per mouse (right, left flank)
- 2 measures performed per tumour every 2nd day
- Dependent variable:

Geometric mean of the 4 measures (L, w on each flank)

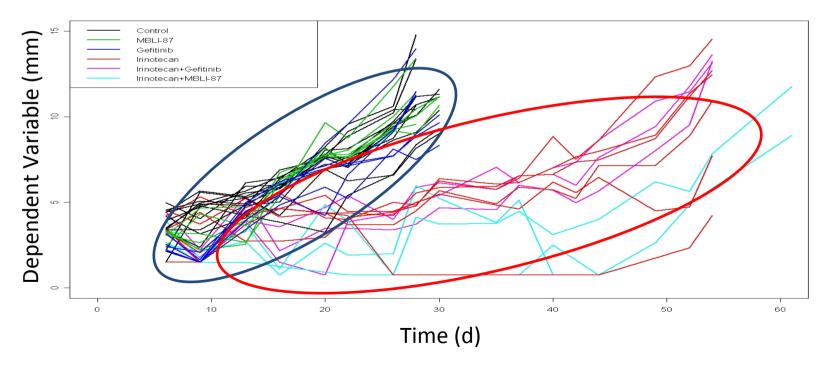

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Animals *Data*

- 2 tumours implanted per mouse (right, left flank)
- 2 measures performed per tumour every 2nd day
- Dependent variable:

Geometric mean of the 4 measures (L, w on each flank)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion



Animals *Data*

- 2 tumours implanted per mouse (right, left flank)
- 2 measures performed per tumour every 2nd day
- Dependent variable:

Geometric mean of the 4 measures (L, w on each flank)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Non linear mixed effects tumour growth inhibition models

- Tumour Growth Inhibition Models (*TGI*): Useful to evaluate oncology drugs in early development
 - Describing disease progression
 - Linking administration regimen to tumour growth dynamics
 - Allowing next steps development prediction

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Non linear mixed effects tumour growth inhibition models

- Tumour Growth Inhibition Models (*TGI*): Useful to evaluate oncology drugs in early development
 - Describing disease progression
 - Linking administration regimen to tumour growth dynamics
 - Allowing next steps development prediction
- Non Linear Mixed Effects modelling (NLME):
 - Using information from the entire population to estimate model parameters
 - Mixed effects: fixed, random effects estimated in the model²

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Non linear mixed effects tumour growth inhibition models

- Tumour Growth Inhibition Models (*TGI*): Useful to evaluate oncology drugs in early development
 - Describing disease progression
 - Linking administration regimen to tumour growth dynamics
 - Allowing next steps development prediction
- Non Linear Mixed Effects modelling (NLME):
 - Using information from the entire population to estimate model parameters
 - Mixed effects: fixed, random effects estimated in the model²

$$P_i = \theta \times e^{\eta_i}$$

P_i: P individual value for the ith individual

 θ : fixed effect

 η_i : random effect, N(0, ω^2)

[•] Issue

Aims

Animals

Model Building

MBD

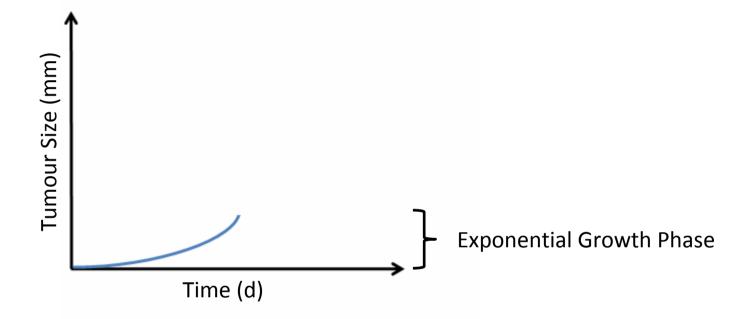
Discussion

Non linear mixed effects tumour growth inhibition models

- Tumour Growth Inhibition Models (*TGI*): Useful to evaluate oncology drugs in early development
 - Describing disease progression
 - Linking administration regimen to tumour growth dynamics
 - Allowing next steps development prediction
- Non Linear Mixed Effects modelling (NLME):
 - Using information from the entire population to estimate model parameters
 - Mixed effects: fixed, random effects estimated in the model²

$$P_{i} = \theta \times e^{\eta_{i}}$$
$$y_{ij} = f(\theta_{i}, X_{ij}) \times e^{\varepsilon_{ij}}$$

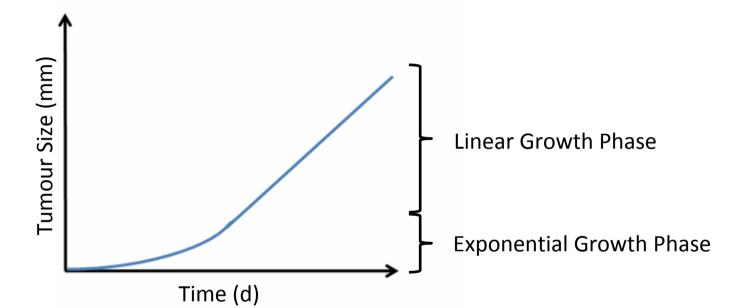
 y_{ij} : j^{th} observation for the i^{th} individual f: prediction function for parameter P_i under X_{ij} condition ϵ_{ij} : residual variability, $N(0,\sigma^2)$


- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Model Building "Unperturbed" Tumour Growth

• 2 different growth phases (Simeoni et al.)³:

- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion



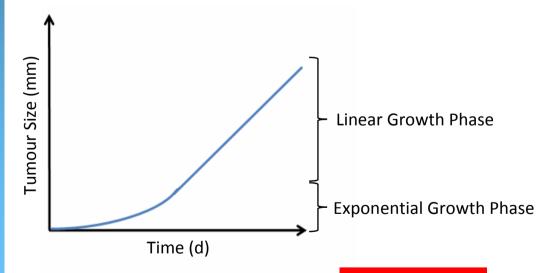
"Unperturbed"
Tumour Growth

NCSC 2010
Alexandre SOSTELLY

Model Building "Unperturbed" Tumour Growth

• 2 different growth phases (Simeoni et al.)³:

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion


"Unperturbed"
Tumour Growth

NCSC 2010
Alexandre SOSTELLY

"Unperturbed" Tumour Growth

• 2 different growth phases (Simeoni et al.)³:

$$\frac{d\varphi_{\textit{tumour},i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{\textit{tumour},i}}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{\textit{tumour},i}\right)^{\psi}\right)^{\frac{1}{\psi}}}$$

 λ_0 : Exponential growth rate (d⁻¹)

 λ_1 : Linear growth rate (mm.d⁻¹)

Ψ: Switching parameter

$$\lambda_{0,i} = \lambda_0 * e^{\eta_{\lambda_0,i}}$$

$$\lambda_{1,i} = \lambda_1 * e^{\eta_{\lambda_1,i}}$$

$$\eta_{\lambda_0,i} \sim N(0, \Omega^2_{\lambda_0,i})$$

$$\eta_{\lambda_1,i} \sim N(0, \Omega^2_{\lambda_1,i})$$

"Unperturbed"
Tumour Growth

NCSC 2010
Alexandre SOSTELLY

OutlineIssueAims

Animals

MBDDiscussion

Model Building

"Unperturbed" Tumour Growth

• 2 different growth phases (Simeoni et al.)³:

 $\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}\right)^{\frac{1}{\psi}}\right)^{\frac{1}{\psi}}}$ Linear Growth Phase

 λ_0 : Exponential growth rate (d⁻¹)

 λ_1 : Linear growth rate (mm.d⁻¹)

Ψ: Switching parameter

$$\lambda_{0,i} = \lambda_0 * e^{\eta_{\lambda_0,i}}$$

$$\lambda_{1,i} = \lambda_1 * e^{\eta_{\lambda_1,i}}$$

$$\eta_{\lambda_0,i} \sim N(0, \Omega^2_{\lambda_0,i})$$

$$\eta_{\lambda_1,i} \sim N(0, \Omega^2_{\lambda_1,i})$$

"Unperturbed" Tumour Growth

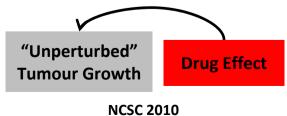
Exponential Growth Phase

NCSC 2010
Alexandre SOSTELLY

Time (d)

OutlineIssueAims

Animals

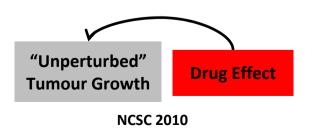

MBDDiscussion

Model Building

Model Building "Perturbed" Tumour Growth

- Natural growth perturbed by drug effect
- Assumed that cell die directly after drug administration

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

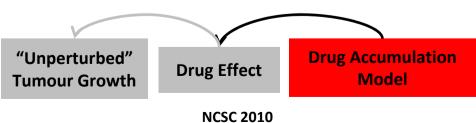


"Perturbed" Tumour Growth

- Natural growth perturbed by drug effect
- Assumed that cell die directly after drug administration

- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}\right)^{\psi}\right)^{\frac{1}{\psi}}} \begin{bmatrix} -P_X \times A_{X,i}(t) \times \varphi_{tumour,i} \\ P_X : \text{ Potency of drug X (mg-1.d-1)} \\ A_{X,i} : \text{ Amount of drug X (mg)} \end{bmatrix}$$

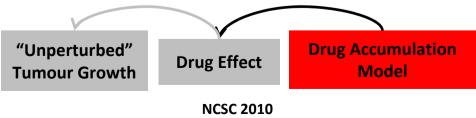


Alexandre SOSTELLY

Model Building *Drug Accumulation Model*

• In our data, no drug concentration!!

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

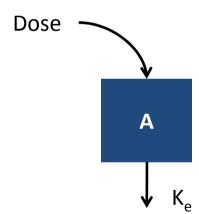


Alexandre SOSTELLY

Model Building Drug Accumulation Model

- In our data, no drug concentration!!
- Simplification thanks to K-PD approach⁴:
 - Assume drug accumulation in animals during treatment, and mono-exponential elimination

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

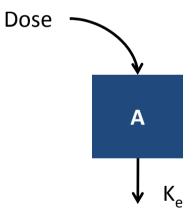


4. Jacqmin P. et al. JPP 2004

Drug Accumulation Model

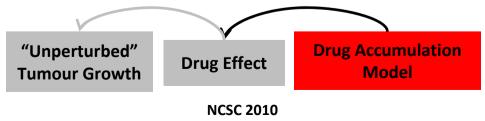
- In our data, no drug concentration!!
- Simplification thanks to K-PD approach⁴:
 - Assume drug accumulation in animals during treatment, and mono-exponential elimination

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

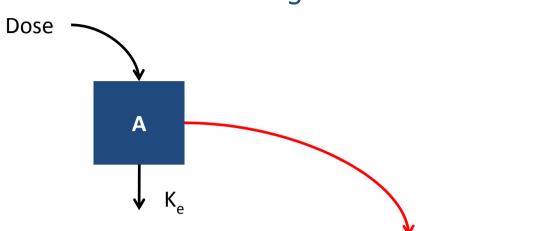


NCSC 2010
Alexandre SOSTELLY

Drug Accumulation Model


- In our data, no drug concentration!!
- Simplification thanks to K-PD approach⁴:
 - Assume drug accumulation in animals during treatment, and mono-exponential elimination

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion


Amount of drug at time t: Latent variable

Estimation supported by tumour growth dynamics

Alexandre SOSTELLY

Drug Accumulation Model

 $DR_{X,i}(t) = K_{e,X} \times A_{X,i}(t)$

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}\right)^{\psi}\right)^{\frac{1}{\psi}}} - P_X \times DR_{X,i}(t) \times \varphi_{tumour,i}$$

"Unperturbed"
Tumour Growth

Drug Effect
Model

Drug Accumulation
Model

NCSC 2010
Alexandre SOSTELLY

Drug Accumulation Model

Dose

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$DR_{X,i}(t) = K_{e,X} \times A_{X,i}(t)$$

$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}\right)^{\psi}\right)^{\frac{1}{\psi}}} - P_X \times DR_{X,i}(t) \times \varphi_{tumour,i}$$

NCSC 2010
Alexandre SOSTELLY

Drug Accumulation Model

Dose A K

Drug effects directly dependent on drug amount in animals

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

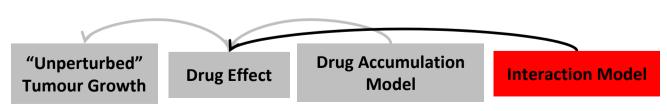
$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}}{\left(1 + \left(\frac{\lambda_{0,i}}{2} \times \varphi_{tumour,i}\right)^{\psi}\right)^{\frac{1}{\psi}}} - P_X \times DR_{X,i}(t) \times \varphi_{tumour,i}$$

"Unperturbed"
Tumour Growth

Drug Effect
Model

Drug Accumulation
Model

Interaction Model


- Assume that :
 - BCRP inhibitors have no cytotoxic effect when administered alone
 - BCRP inhibitors only modified Irinotecan potency

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Interaction Model

- Assume that :
 - BCRP inhibitors have no cytotoxic effect when administered alone
 - BCRP inhibitors only modified Irinotecan potency
 - Irinotecan potency modified in presence of BCRP inhibitors?
- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

NCSC 2010
Alexandre SOSTELLY

2010-09-28

Interaction Model

P_{Irinotecan} decomposed into 2 terms:

$$P_{\mathit{Irin}|\mathit{Inhib}} = P_{\mathit{Irin}} + \beta_{\mathit{Irin}|\mathit{Inhib}} \times DR_{\mathit{Inhib}}(t)$$

P_{Irinotecan}: Irinotecan potency (mg⁻¹.d⁻¹)

 $\beta_{Irinotecan|Inhibitors}$: Interaction parameter (mg⁻¹)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}\right)^{\psi}\right)^{\frac{1}{\psi}}} - \underbrace{P_{Irin|Inhib}}_{Irin,i} \times DR_{Irin,i}(t) \times \varphi_{tumour,i}}_{Irin,i}$$

Summary

In case on single drug administration:

$$\frac{dA_{X,i}}{dt} = -K_{e,X} \times A_{X,i}(t)$$
$$DR_{X,i} = K_{e,X} \times A_{X,i}(t)$$

$$DR_{Xi} = K_{eX} \times A_{Xi}(t)$$

Outline

$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}(t)}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}(t)\right)^{\psi}\right)^{\frac{1}{\psi}}} - P_X \times DR_{X,i} \times \varphi_{tumour,i}(t)$$

Summary

In case on single drug administration:

$$\frac{dA_{X,i}}{dt} = -K_{e,X} \times A_{X,i}(t)$$

K-PD component

- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{d\varphi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \varphi_{tumour,i}(t)}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \varphi_{tumour,i}(t)\right)^{\psi}\right)^{\frac{1}{\psi}}} - P_X \times DR_{X,i} \times \varphi_{tumour,i}(t)$$

Summary

In case of co-administration:

$$\frac{dA_{X,i}}{dt} = -K_{e,X} \times A_{X,i}(t)$$

$$DR_{X,i} = K_{e,X} \times A_{X,i}(t)$$

$$DR_{X,i} = K_{e,X} \times A_{X,i}(t)$$

- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{d\phi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \phi_{tumour,i}(t)}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \phi_{tumour,i}(t)\right)^{\psi}\right)^{\frac{1}{\psi}}} - \left(P_{Irin} + \beta_{Irin|Inhib} \times DR_{Inhib,i}\right) \times DR_{Irin,i} \times \phi_{tumour,i}(t)$$

Summary

In case of co-administration:

$$\frac{dA_{X,i}}{dt} = -K_{e,X} \times A_{X,i}(t)$$

K-PD components

$$\widehat{DR}_{X,i} = K_{e,X} \times A_{X,i}(t)$$

- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{\phi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \phi_{tumour,i}(t)}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \phi_{tumour,i}(t)\right)^{\psi}\right)^{\frac{1}{\psi}}} - \left(P_{Irin} + \beta_{Irin|Inhib} \times DR_{Inhib,i}\right) \times DR_{Irin,i} \times \phi_{tumour,i}(t)$$

Summary

In case of co-administration:

$$\frac{dA_{X,i}}{dt} = -K_{e,X} \times A_{X,i}(t)$$

K-PD components

$$DR_{X,i} = K_{e,X} \times A_{X,i}(t)$$

- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

$$\frac{\phi_{tumour,i}}{dt} = \frac{\lambda_{0,i} \times \phi_{tumour,i}(t)}{\left(1 + \left(\frac{\lambda_{0,i}}{\lambda_{1,i}} \times \phi_{tumour,i}(t)\right)^{\psi}\right)^{\frac{1}{\psi}}} - \left(P_{Irin} + \beta_{Irin|Inhib} \times DR_{Inhib,i}\right) \times DR_{Irin,i} \times \phi_{tumour,i}(t)$$
Interaction component

K-PD Tumour Growth Inhibition Model including Interaction Component

Model BuildingParameter Estimates

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Parameter Estimates

Parameters	Value
λ_0 (d ⁻¹)	0.06
λ_1 (mm.d ⁻¹)	0.2
P _{Irinotecan} (mg ⁻¹ .d ⁻¹)	0.3
P _{Inhibitors} (mg ⁻¹ .d ⁻¹)	10 ⁻²

Values conform to values reported by Simeoni *et al.*

Inhibitors alone have no effect on tumour growth (p>0.05)

Interaction Parameter	Value
$\beta_{\text{Irinotecan} \text{Gefitinib}}$ (mg ⁻¹)	10-2
$\beta_{\text{Irinotecan} \text{MBLI-87}}$ (mg ⁻¹)	5.3

Outline

Issue

Aims

Animals

Model Building

[•] MBD

Discussion

Model BuildingParameter Estimates

Parameters	Value
λ_0 (d ⁻¹)	0.06
λ_1 (mm.d ⁻¹)	0.2
$P_{Irinotecan}(mg^{-1}.d^{-1})$	0.3
P _{Inhibitors} (mg ⁻¹ .d ⁻¹)	10 ⁻²

Values conform to values reported by Simeoni *et al.*

Inhibitors alone have no effect on tumour growth (p>0.05)

Interaction Parameter	Value
β _{Irinotecan Gefitinib} (mg ⁻¹)	10 ⁻²
$\beta_{Irinotecan MBLI-87}$ (mg ⁻¹)	5.3

Interaction stronger with MBLI-87

Outline

Issue

Aims

Animals

Model Building

MBD

Discussion

Model BuildingParameter Estimates

Parameters	Value
λ_0 (d ⁻¹)	0.06
λ_1 (mm.d $^{-1}$)	0.2
P _{Irinotecan} (mg ⁻¹ .d ⁻¹)	0.3
P _{Inhibitors} (mg ⁻¹ .d ⁻¹)	10-2

Values conform to values reported by Simeoni *et al.*

Inhibitors alone have no effect on tumour growth (p>0.05)

Interaction Parameter	Value
β _{Irinotecan Gefitinib} (mg ⁻¹)	10 ⁻²
$\beta_{\text{Irinotecan} \text{MBLI-87}}$ (mg ⁻¹)	5.3

Interaction stronger with MBLI-87

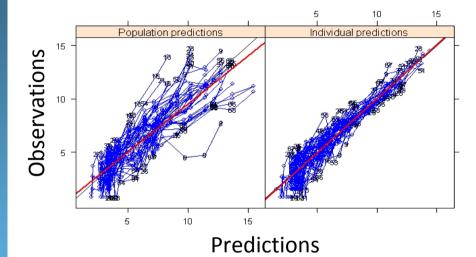
MBLI-87 able to revert Irinotecan resistance at a 20-fold lower dose compared to Gefitinib

Outline

Issue

Aims

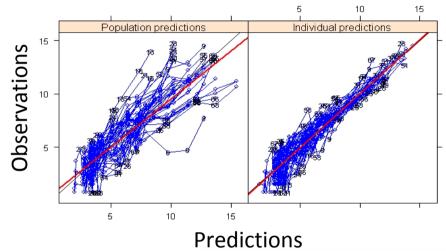
Animals


Model Building

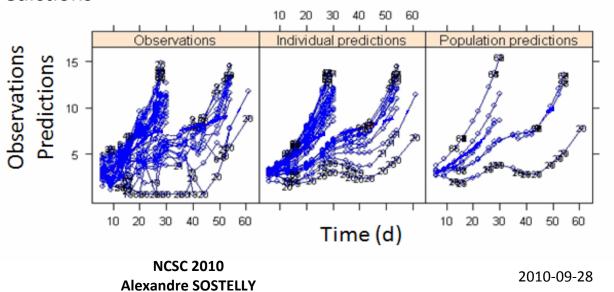
[•] MBD

Discussion

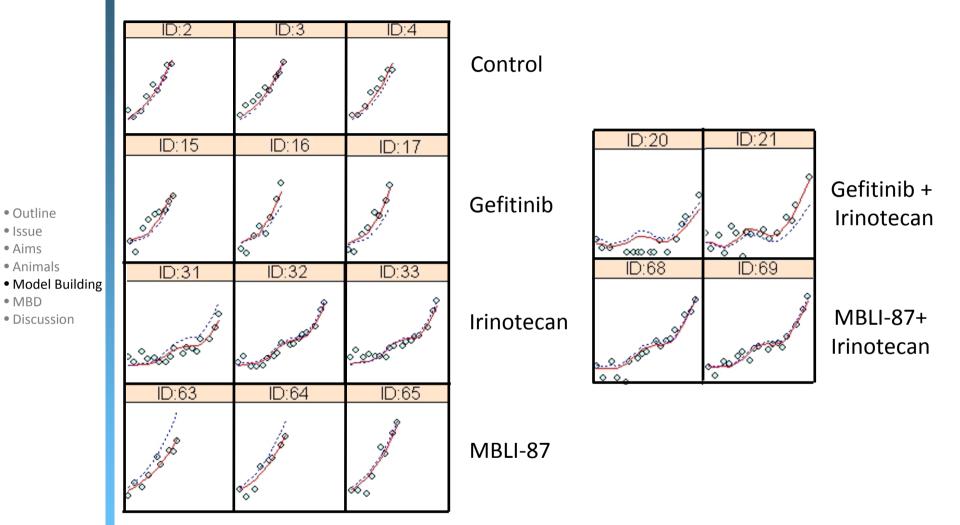
Model Building *Model Evaluation*


Goodness of fit plots:

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion


Model Building *Model Evaluation*

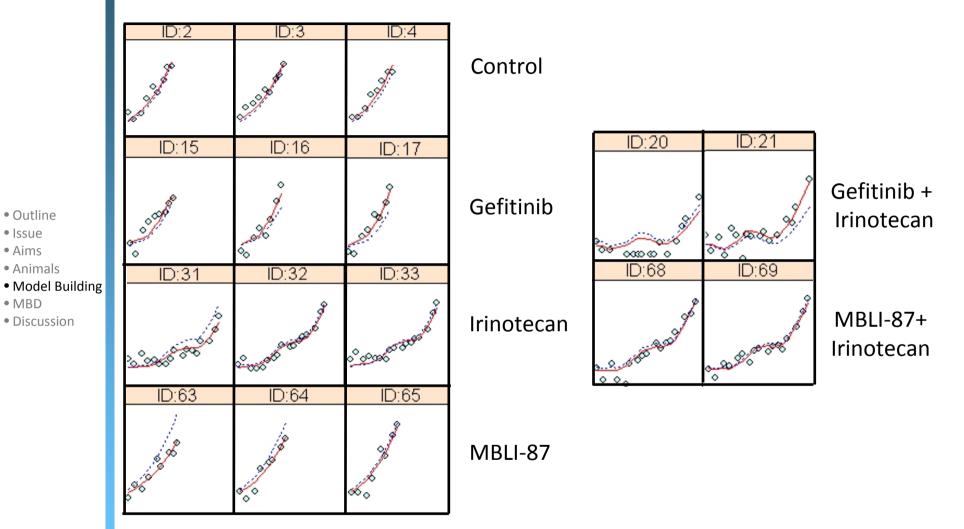
Goodness of fit plots:



- Aims
- Animals
- Model BuildingMBD
- Discussion

Model Evaluation

Outline


Animals

Discussion

Issue Aims

• MBD

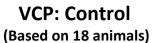
Model Evaluation

Model fits quite well data in all groups

Outline

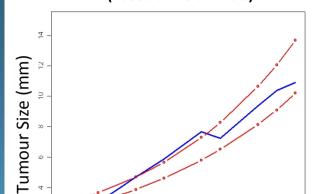
Animals

Discussion


Issue Aims

• MBD

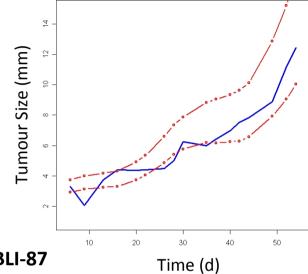
Model Evaluation-Predictive Properties


- Visual Predictive Check:
 - Simulations of tumour growth profiles based on parameter estimates and model structure
 - Comparison of observed median and simulated median given the model

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion
- Perspectives

Predictive Properties

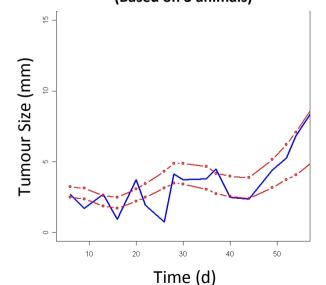
VCP: Irinotecan (Based on 9 animals)



20

Time (d)

25


30

Outline

- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion
- Perspectives

VCP: Irinotecan+MBLI-87 (Based on 3 animals)

NCSC 2010

Alexandre SOSTELLY

Observed Median

 90% non parametric confidence interval

Model Based Development *Objectives and Methods*

Objectives:

- Optimizing Irinotecan/MBLI-87 combination schedule
- Explore the impact of:
 - ✓ Doses
 - ✓ Administration schedules
 - ✓ Treatment duration

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

Model Based Development *Objectives and Methods*

Objectives:

- Optimizing Irinotecan/MBLI-87 combination schedule
- Explore the impact of:
 - ✓ Doses
 - ✓ Administration schedules
 - ✓ Treatment duration
- Criterion:
 - Maximizing differences between Irinotecan and Irinotecan+MBLI-87 tumour growth profiles at day 50

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

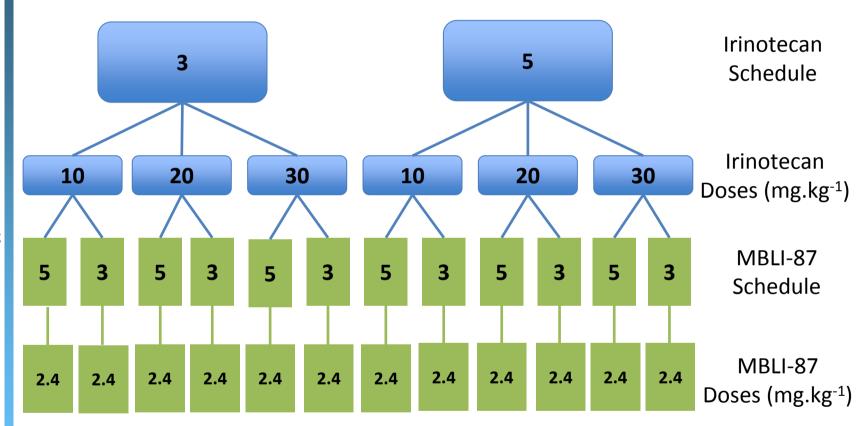
Model Based Development *Objectives and Methods*

Objectives:

- Optimizing Irinotecan/MBLI-87 combination schedule
- Explore the impact of:
 - ✓ Doses
 - ✓ Administration schedules
 - ✓ Treatment duration

• Criterion:

 Maximizing differences between Irinotecan and Irinotecan+MBLI-87 tumour growth profiles at day 50


Methods:

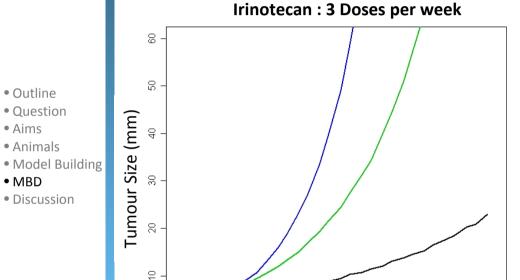
- Simulation of 1000 virtual animals on the model structure and parameter estimates basis (Monte Carlo simulations)
- Taking into account experimental constraints (drug formulation, animals care, ethics, ...)

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

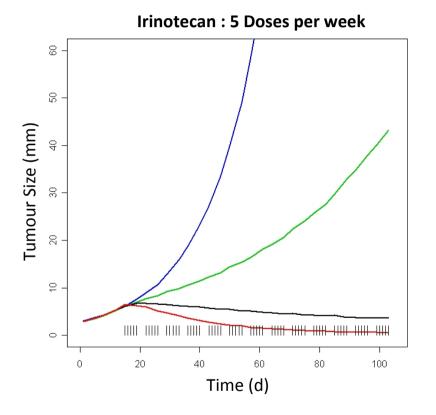
Model Based Development

Irinotecan Schedule

- Outline
- Question
- Aims
- Animals
- Model Building
- MBD
- Discussion


Model Based Development Example

• Influence of Irinotecan schedule on tumour growth


- Outline
- Question
- Aims
- Animals
- Model Building
- MBD
- Discussion

Model Based Development Example

Influence of Irinotecan schedule on tumour growth

Time (d)

Control (median value)

20

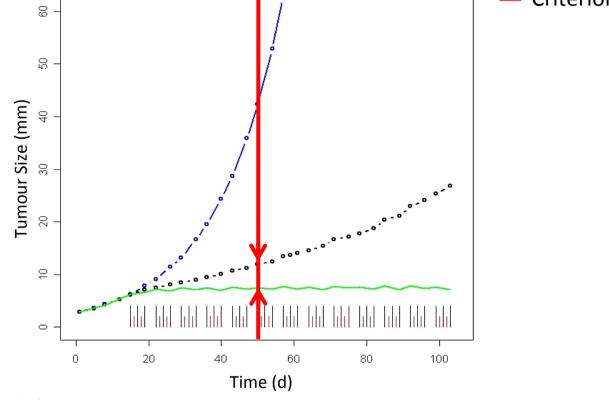
- Irinotecan 10 mg.kg⁻¹ (median value)
- Irinotecan 20 mg.kg⁻¹ (median value)
- Irinotecan 30 mg.kg⁻¹ (median value)

100

 Outline Question

Aims Animals

• MBD Discussion


Model Based Development

Final Schedule

- Outline
- Question
- Aims
- Animals
- Model Building
- MBD
- Discussion

- Control (median value)
- Irinotecan 20 mg.kg⁻¹ + MBLI-87 2.4 mg.kg⁻¹ (median value)
- Irinotecan 20 mg.kg⁻¹ (median value)

Irinotecan: 20 mg.kg⁻¹, 3 times per week MBLI-87: 2.4 mg.kg⁻¹, 5 times per week

- Development of a non linear mixed effects tumour growth inhibition model:
 - Based on Simeoni et al. model with some modifications
 - No PK data: K-PD approach (PK: latent variable)
 - Drugs co-administered: Drug-drug interaction parameter

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion
- Parameter Estimates:
- Synergistic effect between MBLI-87 and Irinotecan
- Adequate predictive properties

- Development of a non linear mixed effects tumour growth inhibition model:
 - Based on Simeoni et al. model with some modifications
 - No PK data: K-PD approach (PK: latent variable)
 - Drugs co-administered: Drug-drug interaction parameter

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion
- Parameter Estimates:
- Synergistic effect between MBLI-87 and Irinotecan
- Adequate predictive properties
- Definition of new therapeutic regimens with biologists
- Simulation study:
 - Choosing the best therapeutic regimen

- Small number of individuals and poor design of this 1st study:
 - Fisher Information Matrix unobtainable: no standard error
 - Only simulation based diagnostics

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

- Small number of individuals and poor design of this 1st study:
 - Fisher Information Matrix unobtainable: no standard error
 - Only simulation based diagnostics

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

BUT, this model is useful to take decision for the next development step

- Small number of individuals and poor design of this 1st study:
 - Fisher Information Matrix unobtainable: no standard error
 - Only simulation based diagnostics

- Outline
- Issue
- Aims
- Animals
- Model Building
- MBD
- Discussion

BUT, this model is useful to take decision for the next development step

- A new dose finding study, based on simulation results, is ongoing:
 - PK analysis
 - Number of subjects increased

Confirmation of these 1st results?

Thanks to

- Michel TOD, my supervisor
- Brigitte TRANCHAND, for valuable discussions
- Colleagues from Lyon and Uppsala
- Organization Committee

You, for your attention