Assessing quality control for repeated bioassay data by parametric and non-parametric prediction intervals

Daniel Gerhard

NCSC, Lyon 2010

Outline

- Evaluating quality control of repeated bioassay data
- Multiple historical observations to characterize bioassay variability
- Test sample to judge about process control
- Using prediction intervals to define a tolerable region
- Retrieving the test sample in the tolerable region
- R package predIntervals
- GUI available [Rohmeyer, Gerhard 2008]

Tolerance- vs. Prediction-Intervals

Tolerance Intervals

- With probability α, the probability that a future observation y_{i} falls in the interval [$\left.\delta_{\text {lower }} ; \delta_{\text {upper }}\right]$ is at least β

Prediction Intervals

- With probability α, a proportion β (or equally k out of n) future observations y_{1}, \ldots, y_{n} will fall in the interval [$\delta_{\text {lower }} ; \delta_{\text {upper }}$]
- With probability α, the mean/median of n future observations y_{1}, \ldots, y_{n} will fall in the interval $\left[\delta_{\text {lower }} ; \delta_{\text {upper }}\right]$

Data Example

Data Example

log-transformation

Prediction interval

to include at least k out of n future observations (Odeh 1990)
historical sample x_{i}, with $i=1, \ldots, m$

$$
\left[\hat{\delta}_{\text {lower }} ; \hat{\delta}_{\text {upper }}\right]=\bar{x} \pm q_{1-\alpha, m, n, k} s \sqrt{1+\frac{1}{m}}
$$

\bar{x}, s is the arithmetic mean and the estimated standard error of the historical observations
$q_{1-\alpha, m, n, k}$ is a two-sided $1-\alpha$ quantile of a multivariate t-distribution considering the restricted number of future observations contained in the interval

If $k=n, q_{1-\alpha, m, n}$ is a two-sided $1-\alpha$ quantile of a multivariate t-distribution with $d f=m-1$ and correlation \boldsymbol{R}, which is a $n \times n$ matrix with off-diagonal elements $\rho=\frac{1}{1+m}$ (Chew 1968)

Prediction interval

to include at least k out of n future observations (Odeh 1990)

Data Example

original scale

Nonparametric prediction interval

to include at least k out of n future observations (Danziger, Davis 1964)
ordered historical sample $x_{1} \leq \cdots \leq x_{m}$
ordered test sample $y_{1} \leq \cdots \leq y_{n}$
Probability that p of n future observations are larger than the historical observation x_{r} :

$$
P\left(x_{r}<y_{p}, \ldots, y_{n}\right)=\binom{p+m-r}{p}\binom{n-p+r-1}{n-p} /\binom{n+m}{n}
$$

Searching the r that satisfies

$$
\sum_{k=p}^{n} P\left(x_{r}<y_{p}, \ldots, y_{n}\right) \leq 1-\alpha
$$

Prediction interval limits are found as $\left[x_{r / 2} ; x_{m-r / 2+1}\right]$.
At $r=0$ the limits are set to $-\infty$ and ∞.
If $r / 2$ is not an integral number, the mean of the observations with the neighboring ranks are chosen.

Nonparametric prediction interval

to include at least k out of n future observations (Danziger, Davis 1964)
$\square \mathrm{k}=7 \square \mathrm{k}=6 \square \mathrm{k}=5 \square \mathrm{k}=4 \square \mathrm{k}=3 \square \mathrm{k}=2 \square \mathrm{k}=1$

Prediction interval

to include the mean of n future observations (Hahn, Meeker 1991)

$$
\left[\hat{\delta}_{\text {lower }} ; \hat{\delta}_{\text {upper }}\right]=\bar{x} \pm t s \sqrt{\frac{1}{m}+\frac{1}{n}}
$$

\bar{x}, s is the arithmetic mean and the estimated standard error of the historical observations
t is a two-sided $1-\alpha$ quantile of a univariate t-distribution with $d f=m-1$

Prediction interval

to include the mean of n future observations (Hahn, Meeker 1991)

Nonparametric prediction interval

to include the median of n future observations (Chakraborti et al. 2004)
ordered historical sample $x_{1} \leq \cdots \leq x_{m}$ ordered test sample $y_{1} \leq \cdots \leq y_{n}$
Probability that p of n future observations are larger than the historical observation x_{r} :

$$
P\left(x_{1} \leq \cdots \leq x_{r} \leq y_{p}\right)=\binom{p+r-1}{r}\binom{m+n-p-r}{m-r} /\binom{n+m}{m}
$$

Prediction interval limits $\left[x_{l} ; x_{u}\right]$ are found by

$$
\sum_{r=l}^{u+1} P\left(x_{r}<y_{p}, \ldots, y_{n}\right) \geq 1-\alpha
$$

Nonparametric prediction interval

to include the median of n future observations (Chakraborti et al. 2004)

Package predlntervals

on R-Forge:

http://predintervals.r-forge.r-project.org

R Functions
> predint (x, k, m, level=0.95,
alternative="two.sided", quantile=NULL)
> nparpredint(x, $k, m, ~ l e v e l=0.95$, alternative="two.sided")
> precint (x, m, level=0.95, alternative="two.sided")
> nparprecint(x, m, level=0.95,
alternative="two.sided")

Coverage Simulations

$x_{i} \sim$ Normal

- Parametric PI
- Non-Parametric PI
$x_{i} \sim$ logNormal
- Parametric PI
- Non-Parametric PI

Discussion

- At least $m \approx 20$ observations needed to obtain accurate intervals
- Better performance at small k

Parametric intervals

- Calculation inaccuracy at small n
- Dependent on parametric assumptions

Nonparametric intervals

- Dependent on the actual sample ($m>20$ needed)
- Distribution-free

References

Q Hahn, GJ and Meeker, WQ (1991): Statistical Intervals. Wiley, New York.

- Chakraborti, S, Van der LaAn, P, Van de Wiel, MA (2004): A class of distribution-free control charts. Applied Statistics 53(3):443-462.
D DANZIGER, L AND DAVIS, SA (1964): Tables of distribution-free tolerance limits. Annals of Mathematical Statistics 35(3):1361-1365.
(Hothorn, LA, Gerhard, D, Hofmann, M (2009): Parametric and non-parametric prediction intervals based phase II control charts for repeated bioassay data. Biologicals (5):323-330.
國 ODEH, RE (1990): 2-Sided prediction intervals to contain at least k out of m future observations from a normal distribution. Technometrics 32(2): 203-216.
- R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Simulated coverage: $x_{i} \sim \operatorname{Normal}(0,1)$

Parametric prediction interval

Simulated coverage: $x_{i} \sim \operatorname{Normal}(0,1)$

Non-Parametric prediction interval

Simulated coverage: $x_{i} \sim \log \operatorname{Normal}(0,1)$

Parametric prediction interval

Simulated coverage: $x_{i} \sim \log \operatorname{Normal}(0,1)$

Non-Parametric prediction interval

Quantile calculation for a prediction interval

to include k out of n future observations (Odeh 1990)

$$
\begin{aligned}
& r=\sqrt{\frac{m+1}{m} u^{\star}} \quad \text { satisfying } \quad \sum_{j=k}^{m} P\left(f_{j}\left(u^{\star}\right)\right)=1-\alpha \\
& P\left(f_{j}\left(u^{\star}\right)\right)=\int_{0}^{\infty}\left\{\int_{-\infty}^{\infty}\binom{n}{j}[\Phi(b)-\Phi(a)]^{j} \times[\Phi(b)-\Phi(a)]^{n-j} \phi(y) d y\right\} f_{\nu}(s) d s \\
& a=-u s+\frac{\sqrt{\rho} y}{\sqrt{1-\rho}} \quad b=u s+\frac{\sqrt{\rho} y}{\sqrt{1-\rho}} \quad \rho=\frac{1}{m+1}
\end{aligned}
$$

$\Phi(\cdot), \phi(\cdot)$ are the standard normal density and distribution functions
$f_{\nu}(s)$ is the density function of S, where νS^{2} is χ^{2} distributed with $d f=m-1$ and $\nu=m-1$

