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Good morning,



My name is Marion Berger.



I am going to present you some considerations regarding the determination of cut-point in the context of immunogenecity assays.

A cut-point, here, is a limit above which lies a certain percentage of the data. Various ways are possible.

Amongst them, we will put an emphasis on the use of prediction limit as an alternative to the commonly used 95% percentile.

This work was conducted with my colleague Dave Hoffman
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Context and study designs

Some drugs are biological proteins

We need to know if the body is going to develop 
antibodies

 
to these proteins

Like for vaccines
Although here we hope for no antibodies activation

The actions of antibodies on the drug may cause
Risk of adverse events
Less efficacy
Clinical sound implications/complications

Présentateur
Commentaires de présentation
The Statistical departement started being contacted on the problematic of cut-point when the company started developping drugs under the form of biological proteins.



The problem with such drugs is that the body can develop anti-bobies to these proteins.
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Context and study designs

Controlling the presence of antibodies has become a 
regulatory concern

FDA : Draft Guidance for Industry on Assay Development for 
Immunogenicity Testing of Therapeutic Proteins

Called for comments in Jan 2010

EMEA : Concept Paper On Immunogenicity Assessment Of 
Monoclonal Antibodies Intended For In Vivo Clinical Use

Issued for comments in March 2009 by the Committee For 
Medicinal Products For Human Use (CHMP)
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Context and study designs

Pharmaceutical industry develops specific bioanalytical 
methods

 
to detect the presence of antibodies

The idea is to detect a meaningful change or level in the 
subject sample immunoassay signal 

Antibodies 2 & 3  
weeks after 
treatment

Présentateur
Commentaires de présentation
The persons are given the drug and they are sampled regularly to detect the formation of antibodies.



On the graph, you can see 6 subjects kinetics : 3 (red) have developped antibodies at some time, 2 after 2 weeks, 1 after 3 weeks. 



The objective is to determine a meaningful change or a level in the immunoessay signal above which we can say that the sample contains antibodies.



On the graph, we can imagine this cut-point around a response of 1.5.
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Context and study designs

Objective of cut-point determination studies
Determine a signal level

 

above which samples are suspected 
“positive”

 

=

 

may contain antibody

Any clinical study sample above that level will be re-tested 
for confirmation

The confirmatory assay is a different assay with a more specific

 

test
 Cost in time and money

How to determine a biologically meaningful signal level ?
 find a statistically meaningful level

Présentateur
Commentaires de présentation
As a matter of fact, there are several steps in cut-point determination study. The first one, called screening, will lead to identify samples suspected to contain antibodies, that is suspected to be « positive ».







The statistical response to find a biologically meaningful signal is to find a statistically meaningful signal.
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Context and study designs

Objective of cut-point determination studies
Cut-off = Trade-off :

Distribution of true

 
negative

Distribution of true

 
positive

Cut-point=trade

 

offFalse negative rate
False positive rate

Numbers are just for illustration, not potential target values

Estimable at

 
predose

Not 
estimable

Présentateur
Commentaires de présentation
We can imagine 2 distributions:

the distributions of the samples which have no antibodies, that we will call “true negative”, which can be estimated from healthy subjects (animals or humans) before starting treatment.

And the distribution of samples which contain antibodies, that we will call “true positive”, which can be estimated from postdose subjects. This is very important, because it means that we cannot know this distribution ahead of time. We have to determine the cut-point in absence of the information.

On the graph here, I have plotted an intersection between the 2 distributions, but it could be none or even a wider one.



So, when determining a cut-point, we will have to trade-off between 2 rates:

The False negative rate (blue) : Samples below will not be confirmed  risk of missing true positive

The False positive rate (FPR): Samples above may be confirmed negative

The higher the false positive rate, the most cost associated with confirmatory testing

If too low, potential to increase the false negative rate

5% in FDA draft guidance = sort of trade-off



False negative rate : No a priori knowledge of the true positive distribution

     Know it only at the end of the samples analyses

     Cannot control it

False positive rate : Can get knowledge through studying the distribution of true negs

Healthy subjects/animals, predose patients

   Can control it
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Context and study designs

Cut-point determination

Based on some percentile of the distribution of negative 
samples (Negative = without antibodies)

False Positive Rate = what we want to control
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Context and study designs

Study design for cut-point determination

Some validation method designs at sanofi-aventis (on negs):

Animals : 20 subjects measured in 3 times in 3 runs. 
Total = 60 observations

Humans : 50-100 subjects measured in 3-6 times in 3-6 runs.
Total = 150-600 observations
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Context and study designs

Cut-point determination : more complicated than just the 95th

 percentile
At least 3 sources of variability

 

to be considered in clinical 
studies

Run-to-run variability
Chip, day, plate …

Biological subject-to-subject variability
Analytical variability

Cut-point calculation: should incorporate at least these 3 
sources
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Context and study designs

Study design for cut-point determination

Associated model : 2 crossed random factors ANOVA model

Yij

 

= 

 

+ RUNi

 

+ SUBJj

 

+ ERRORij

where
Yij

 

= response for subject j in run i  ~ N(, ²TOT

 

)
RUNi

 

= random Run term ~ N(0, ²RUN

 

)
SUBJj

 

= random Subject term ~ N(0, ²SUBJ

 

)
ERRORij

 

= random Error term ~ N(0, ²ERROR

 

)


²TOT

 

= ²RUN

 

+ ²SUBJ

 

+ ²ERROR
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Variance components analysis

Proportions of variability components
Examples of 4 studies on 4 compounds

“adjusted”

 

response does not remove all the run-to-run variability
Not always perfect correlation between subject samples and negative 
control plasma pool 

Variability components in % of total variability
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Présentateur
Commentaires de présentation
Here are the results from 4 studies:

Study 1 : 20 animals / 3 runs

Study 2 : 80 health humans / 6 runs

Study 3 : 90 health humans / 3 runs

Study 4 : 52 health humans / 3 runs



We see that the between-run component can be quite important.











Hypothesis that variability within a run is constant: same variability from run to run
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Weaknesses of simple parametric & non-
 parametric percentile

“Simple”

 

Parametric (SP) percentile based on normal distribution
Cut-point = mean + z1-

 

* SD


 

= probability that the sample will be considered positive while

 

it is negative
For 

 

= 5%  Z1-

 

= 1.645
SD = total SD from ANOVA model

Non-parametric (NP) percentile based on free distribution
Cut-point = (1-)% observed percentile

Other approaches possible
Example: Robust parametric method

Cut-point = median + z1-

 

*(1.483*MAD)
-

 

MAD= median absolute deviation
-

 

1.483*MAD 

 

SD for normally distributed data
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Weaknesses of parametric & non-parametric 
percentile

Not for prediction
Just tells you that 95% of the sample data are below this value

Does not tell you anything about any future value

Does not ensure you to capture 95% of the true negative in future 
assays

Does not ensure you control the false positive rate

For non-parametric and semi-parametric approaches
Does not take into account the correlation

 

between the data
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Prediction interval (PI) approach
An interval in which a future observation will fall, with a certain 
probability (i.e. 95%), given what has already been observed

on repeated experiments, any new observation (Xn+1

 

) shall fall in this 
interval the desired percentage of the time

Prediction distribution (simple random sample)

We know from previous experiment that

and

If we take the difference of these two and center, we have :

Therefore:       

Interest of prediction limit approach

 2
1n  ,~X N  nN / ,~X 2

 1 ,0~
/

X-X
22

1n N
n 



 )/11(* ,~X 2
1n nXN  
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Interest of prediction limit approach

Prediction distribution
With unknown , we have:

For a simple random sample :
Cut-point = mean + tdf,1-

 

*SD*(1+1/n)0.5

Mean = overall mean of the experiment
df = n-1
n = sample size of the experiment


 

= probability that an observation will be considered as positive while it is 
negative
SD = standard deviation from the experiment

1-n

22
1n ~

/
X-X T

nSDSD 

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Interest of prediction limit approach

However, we don’t have a simple random sample

Recall: correlation + multiple variance components 

Use total SD from ANOVA

Use Ne

 

: effective sample size
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Interest of prediction limit approach

Ne
 

: effective sample size
With a simple random sample, we have:

In our case, we have:

with j variance terms in the model and Ij

 

observations/modalities for the factor j
N : total number of observations

Then

2

2
22 /

Y

Y
YY NN


 

22 / YYNe 

obsofnbtotalsubjofnbrunsofnb
NI ERRORSUBjRUNq

j ejjY        
)/()/(

222
1

1
222   



2221

1
222

ERRORSUBJRUN
q

j ejY   



Présentateur
Commentaires de présentation
On this formula, we can see straight the impact of the sample siza and the sample design : throught the nb of runs and the nb of subjects in denominators

 Impact of ²run and ²subj : low number of runs  high weight of this component in the total var.
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Interest of prediction limit approach 
Simulation results
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Average False Positive Rate (FPR) versus number of analytical runs and number of subjects for nonparametric (NP),
simple parametric (SP), and prediction interval (PI) approaches.
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Présentateur
Commentaires de présentation
A noticeable advantage of the Prediction Limit : the FDR is quasi constant whatever the sample size : it is not sample size dependant





20

Interest of prediction limit approach 
Simulation results

False Positive Rate (FPR) standard deviation versus number of analytical runs and number of subjects for
nonparametric (NP), simple parametric (SP), and prediction interval (PI) approaches.  Variance component ratio                 

fixed at 2:2:1. 2
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Here, the 10% were chosen arbitrarily.

This slide is just to show the extra cost in time and money.
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Interest of prediction limit approach 
Simulation results

Probability of obtaining actual False Positive Rate (FPR) 

 

0.10 versus number of analytical runs and number of 
subjects for nonparametric (NP), simple parametric (SP), and prediction interval (PI) approaches.  Variance 
component ratio                                  fixed at 2:2:1.2
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Interest of prediction limit approach

May not see advantage on a study-by-study basis

But 
Will provide least bias

the closest FPR from the target FPR on average

With least variability
Won’t vary from study to study as much as the others
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Open considerations

Weaknesses of prediction limit approach 
Need normal distribution

Usually overcome with appropriate transformation (Box-Cox, log)
In some studies, will yield very low false positive rate

Can be less than 1%
Risk of detecting less true positive ?

Used on real cases: risk unchanged

Advantages
Consistent theoretically if goal is to confirm 5% of screened 
samples on average
Least variability compared to the FPRs

 

estimated from the 
other approaches
Save resources, so costs and money
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