Assessing the Similarity of Bio-analytical Methods (Linear Case)

Jason Liao, Ph.D. Merck Research Laboratories

Joint work with Yu Tian, Rong Liu, Robert Capen

Non-Clinical Statistics Conference, 2008

Outline

- Introduction
- Existing methods & potential problems
- New method
- Simulation study
- Summary and discussion

Introduction

- Why Similarity
 - A key assumption
 - RP
- Definition of similarity
 - Mathematically : f (x)=g (px)
 - Parallelism
 - P: relative potency.

Introduction (cont.)

- Target: Sufficiently Similar \rightarrow Single RP
- Assessing the Similarity
 - Mathematically.
 - The assessment of the degree of similarity is very tricky between two sparse, noisy sets of non-linear dose response data sets.
 - No universal Strategy
 - Two kinds of existing method:
 (1) Significance Test
 (2) Equivalence Test.

Significance Test

(linear case: Similarity \Leftrightarrow Same Slopes)

Significance Test
 Ho: Two slopes are exactly same.
 Ha: Two slopes are different;

When the precision increases....

Lab A: Good Precision \rightarrow Not similar

Lab B: Poor Precision →Similar

(linear case: Similarity= Same Slopes)

• Equivalence test

Ho: |difference| >=D Ha: |difference| <D

- The equivalence limits define differences between test and standard preparations that are considered unimportant.
 - Step1: CI for difference
 - Step2: CI vs. Equivalence limit

(linear case: Similarity= Same Slopes)

	Lab A	Lab B
Significance test	Not similar	Similar
Equivalence Test	Similar	Not Similar

(linear case: Similarity= Same Slopes)

- Fixed equivalence limit (Not vary with application)
 - [0.8,1.25] for the ratio of the slopes
- Capability based equivalence limit (Tolerance limit)
 - Manage the rate at which we falsely detect non-similarity
 - Can be assessed by evaluating reference material relative to itself.
 - 1. For complete reference data
 - 2. Pair them in all possible combination
 - 3. set up CI....
 - 4. use the most extreme boundary.

(linear case: Similarity= Same Slopes)

• DE (dilution effect)

DE=100%(21-bs/br-1)<=20%

- A statistic called dilution effect was introduced in the industry to assess dilution similarity. (Schofield T. 2000). The dilution effect is a measure of the percent bias per 2-fold dilution in a test samples' value relative to that of the reference standard.
- The absolute value of dilution effect less than 20% has been used in the industry to conclude dilution similarity (parallelism) between the test sample and the reference standard

New Method

- Equivalence Test
- Overall difference of the response: shape of the curves

New Method: J-method

- J-method: $Y_{1i} Y_{2i} \sim A_i + \omega_i \qquad \omega_i \sim N(0, \tau^2)$
- Parallel \Leftrightarrow $A_1 = A_2 = ... = A_5 = a_1 + b_1 x (a_2 + b_2 x) = a_1 a_2$

New Method: J-method (cont.)

• Estimate the CI for Ai

Construct Equivalence Limit

(1) Width-- Variation that are considered to be acceptable Standard curve compare to itself (Tolerance Limit)

(2) Shift-- $\hat{a}_1 - \hat{a}_2$

New Method: J-method modification (cont.)

Deal with large variation

 $\log(\mathbf{y}_1) - \log(\mathbf{y}_2) = \log(\mathbf{y}_1/\mathbf{y}_2)$

- Control the width of equivalence limit
 - 2-fold difference boundary $y_1/y_2 \le 2 \rightarrow \log(y_1) - \log(y_2) \le \log(2) \approx 0.7$ $y_1/y_2 \ge 0.5 \rightarrow \log(y_1) - \log(y_2) \ge \log(0.5) \approx -0.7$
 - 3-fold difference boundary

 $\begin{array}{l} \gamma_1/\gamma_2 <= 3 \rightarrow \log(\gamma_1) - \log(\gamma_2) <= \log(3) \approx 1.1 \\ \gamma_1/\gamma_2 >= 1/3 \rightarrow \log(\gamma_1) - \log(\gamma_2) >= \log(1/3) \approx -1.1 \end{array}$

Simulation Study

- Linear Case
 - F
 - DE
 - J, J2, J3

Simulation Settings

Test Sample Standard Sample

$$\begin{aligned} Y_i &= a_1 + b_1 X_i + \varepsilon_i \\ Y_i &= a_2 + b_2 X_i + \delta_i \\ \varepsilon_i &\sim N(0, \sigma^2) \quad \delta_i \sim N(0, \sigma^2) \end{aligned}$$

```
X_i = log(1,2,4,8,16) 2 fold dilution (16 to 1)

a_1 = a_2 = 1

b_2 = 1

b_1 = 1, 1.01, 1.1, 1.3, 1.5, 2

RSD = 5%, 10%, 20%, 30%, 50%, 100%

3 Replicates

numbers of simulation = 1000 for each parameter setting
```


comparison of different methods (DE,F,J,J2,J3), rep=3, b1=1, b2=1, c=0

16

comparison of different methods (DE,F,J,J2,J3), rep=3, b1=1.5, b2=1, c=0

- F: variance ↗, tends to conclude parallel
- DE: variance >, may not be able to get the right conclusion
- J, J2, J3: J3 works well, even when variance 🗡

Discussion

- Heterogeneous Variance: Var(y)= c·(y)^{2r}
 - New method can be easily applied

