Genomic Biomarkers for a Categorical Response Variable in Early Drug Development Microarray Experiments

Suzy Van Sanden¹, Ziv Shkedy¹, Tomasz Burzykowski¹, Hinrich G*ö*hlmann², Willem Talloen², Luc Bijnens²

NCS, September 2008, Leuven

¹Universiteit Hasselt, Center for Statistics, Agoralaan, gebouw D, B-3590 Diepenbeek, Belgium ²Johnson & Johnson, PRD, Turnhoutseweg 30, B-2340 Beerse, Belgium

Overview

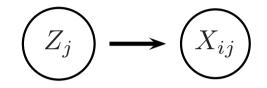
Introduction

■ Joint Modeling Approach - Cont. Case

Case-Study

- Joint Modeling Approach Binary Case
- Biomarker Selection using BW-criterion
- Results
- Discussion & Conclusion

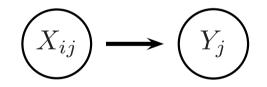
Microarray: tools to measure the gene expression for a large number of genes at the same time


Genomic biomarker: expression of a gene that causes a certain response (disease) or is associated with a response

 \implies indicator for the response

Introduction

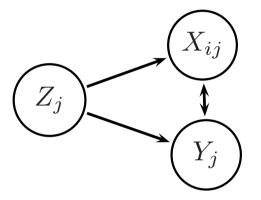
Microarray experiment:


- Z_j : treatment of subject j
- X_{ij} : gene-expression for gene i of subject j

 \implies Detect genes that are differentially expressed

Microarray biomarker experiment:

- X_{ij} : gene-expression for gene i of subject j
- Y_j : response of subject j


 \implies Detect genes that can be used to predict the response

Introduction

Biomarkers in early drug development studies:

(Shkedy et al., 2008)

- Z_j : treatment of subject j
- Y_j : response of subject j
- X_{ij} : gene-expression for gene i of subject j

- Asses effect of treatment on response of interest by using information on expression levels of a group of genes
 - ⇒ Detect genes influenced by treatment and/or correlated with the response

Joint Modeling Approach - Cont. Case

Joint model for gene-expression and continuous response: (Shkedy et al., 2008)

 $\begin{pmatrix} X_{ij} \\ Y_j \end{pmatrix} \sim N \left[\begin{pmatrix} \mu_i + \alpha_i Z_j \\ \mu_Y + \beta Z_j \end{pmatrix}, \begin{pmatrix} \sigma_{X_i}^2 & \sigma_{X_iY} \\ \sigma_{X_iY} & \sigma_Y^2 \end{pmatrix} \right]$

Prognostic biomarker: Gene-expression is correlated with the response, after adjustment for treatment

 \implies correlation coefficient $\rho_i = \frac{\sigma_{X_iY}}{\sigma_{X_i}\sigma_Y} \neq 0$

Therapeutic biomarker: Gene-expression is affected by treatment and predictive for effect of treatment on response

 $\implies \beta \neq 0 \text{ and } \alpha_i \neq 0$

Prognostic/therapeutic biomarker

 α_i

 $\left(Z_{j} \right)$

 X_{ij}

 Y_j

Case-Study with Categorical Response

- Toxicology study on rats
- **Treatment** (Z_j) : 3 treatment 1 control group
- 25 animals per group (100 in total)
- **Response** (Y_j) : Toxicity measurements (4 levels)
- Gene expression data (X_{ij}) :
 - $\,\approx$ 31000 genes
 - only for 38 animals (about 10 per group)

Case-Study with Categorical Response

Number of rats for different toxicity levels:

	Treatment							
Toxicity	С	T1	T2	Т3				
none (0)	10	1	0	0	11			
low (1)	0	3	0	1	4			
medium (2)	0	6	5	3	14			
high (3)	0	0	3	6	9			
	10	10	8	10	38			

- \Rightarrow Toxicity seems to depend on treatment
- \Rightarrow Problem of sparse data!

Case-Study with Categorical Response

Toxicity variable dichotomized (low level - high level):

		Treatment						
Toxicity	С	T1	T2	Т3				
Low toxicity	10	4	0	1	15			
High toxicity	0	6	8	9	23			
	10	10	8	10	38			

 \Rightarrow Compare treatment groups 1 and 3

Logistic regression for effect of treatment on toxicity:

- reduced dataset (20): no difference (p=0.1472)
- full dataset (50): difference (p=0.003)
- \Rightarrow Sample-size problem!

Joint Modeling Approach - Binary Case

Latent continuous variable Y_i^* underlying binary variable Y_j

$$Y_{j} = \begin{cases} 1 & Y_{j}^{*} > 0 \\ 0 & Y_{j}^{*} \le 0 \end{cases}$$

I Joint model for latent outcome Y_i^* and gene-expression X_{ij} :

$$\begin{pmatrix} X_{ij} \\ Y_j^* \end{pmatrix} \sim N \left[\begin{pmatrix} \mu_i + \alpha_i Z_j \\ \mu_Y + \beta Z_j \end{pmatrix}, \begin{pmatrix} \sigma_{X_i}^2 & \sigma_{X_iY} \\ \sigma_{X_iY} & \sigma_Y^2 \end{pmatrix} \right]$$

Resulting probit model formulation for Y_j and X_{ij} for gene *i*:

$$\begin{array}{l} X_{ij} \sim N(\mu_i + \alpha_i \ Z_j, \sigma^2_{X_i}) \\ Y_j \sim B(p_j) \\ \Phi^{-1}(p_j) = \mu_Y + \beta \ Z_j \end{array}$$

- Constraint: σ_Y^2 =1
- $B(p_j)$: Bernoulli distribution

-
$$p_j = P(Y_j = 1)$$

- Φ : standard normal cum. dist.

SAS procedure GLIMMIX

Joint Modeling Approach - Binary Case

- Prognostic biomarker: $\rho_i = \frac{\sigma_{X_iY}}{\sigma_{X_i}\sigma_Y} \neq 0$
 - Interpretation: correlation coefficient for binary Y_j and X_{ij} \longrightarrow correlation between cont. Y_j^* and X_{ij} after correction for treatment (Renard *et al.*, 2002)
 - $H_0: \rho_i = 0$ versus $H_1: \rho_i \neq 0$ (LR test)
 - Bonferroni correction (5% sign. level): no genes
 - Potential therapeutic biomarker: $\alpha_i \neq 0$
 - $H_0: \alpha_i = 0$ versus $H_1: \alpha_i \neq 0$ (T-test)
 - Bonferroni correction (5% sign. level): 33 genes

Joint Modeling Approach - Binary Case

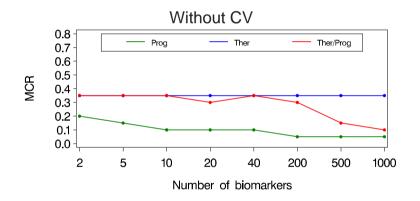
- Remarks about the modeling approach in the binary case:
 - Definition of prognostic biomarker?
 - Application is limited:
 - Problems with sparse data
 - Only binary response data (GLIMMIX procedure)

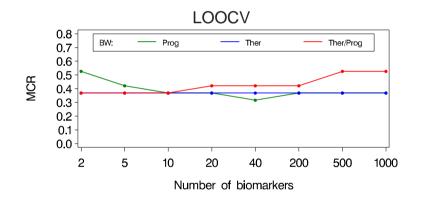
Remarks about hypothesis testing in the binary case:

- Advantage: Reduces risk of chance finding
- Disadvantage: Not necessarily best subset for classification

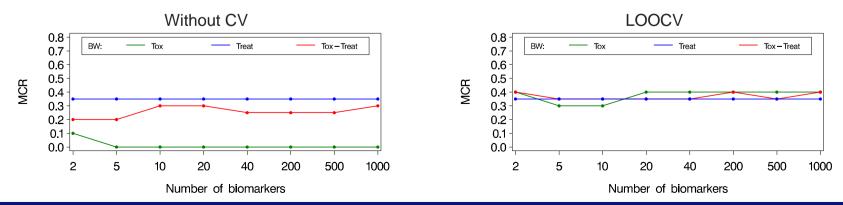
 - Too many genes filtered out \implies Loss of classification information
 - Too few genes selected \implies Not enough to reduce noise
- Sample size problem: not enough power?
- \implies Ranking-based approach for biomarker selection

Alternative Approach: BW-criterion

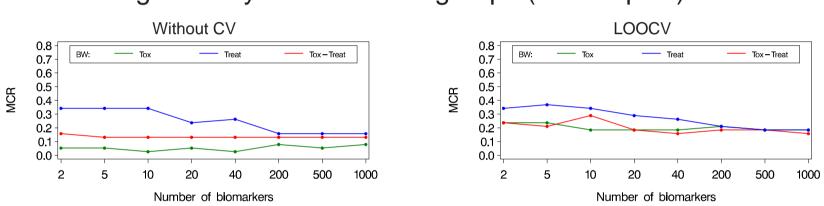

Biomarker Selection: top p genes with largest BW-ratio


 $\mathsf{BW} = \frac{\mathsf{between}\mathsf{-}\mathsf{group}\;\mathsf{sum}\;\mathsf{of}\;\mathsf{squares}}{\mathsf{within}\mathsf{-}\mathsf{group}\;\mathsf{sum}\;\mathsf{of}\;\mathsf{squares}}$

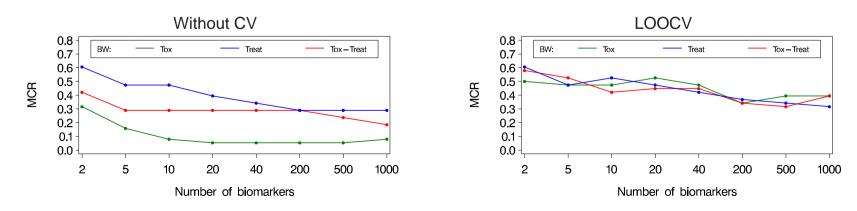
- Choice of grouping variable:
 - Response level (BW_{Response}) \rightarrow Potential prognostic biomarkers
 - Treatment group (BW $_{Treat}$) \rightarrow Potential therapeutic biomarkers
 - Combination (BW_{Resp-Treat}) \rightarrow Potential therapeutic/prognostic biomarkers
 - \hookrightarrow Rank = sum of ranks from BW_{Response} and BW_{Treat}


MCR (DLDA) for Toxicology Study

- Toxicity: Low High, Treatment: T1 T3 (20 Samples)
- Joint modelling approach:
 - 33 potential therapeutic biomarker: MCR = 0.35
 - Ranking according to p-value:



BW-criterion:


MCR (DLDA) for Toxicology Study

BW-criterion

Low - high toxicity – 4 treatment groups (38 samples):

■ 4 levels of toxicity – 4 treatment groups (38 samples):

Discussion

- Correspondence (modelling approach BW-ratio) for therapeutic biomarkers
- Alternative definition of prognostic biomarkers:
 - Model: Linear association between gene-expression and response after correction for treatment
 - BW-ratio: Ability to separate samples between levels of response variable

€

How to choose optimal number of biomarkers?

Conclusion

Two approaches for biomarker selection:

- Joint-modeling in a binary setting
 - Computationally intensive
 - Problematic for sparse data
 - Definition prognostic biomarker?
- BW-criterion in a categorical setting
- Detection of biomarkers (subgroup of gene) influenced by treatment (therapeutic) and/or that can discriminate between the response levels (prognostic)

- Renard, D., Geys, H., Molenberghs, G., Burzykowski, T., and Buyse, M. (2002) Validation of surrogate endpoints in multiple randomized clinical trials with discrete outcomes. *Biometrical*, 44, 921–935.
- Shkedy, Z., Lin, D., Molenberghs, G., Göhlmann, H., Talloen, W., and Bijnens, L. (2008) Gene-specific and joint surrogacy in microarray pre-clinical experiments. *Submitted*.
- Van Sanden, S., Shkedy, Z., Burzykowski, T, Göhlmann, H., Talloen, W., and Bijnens, L. (2008) Genomic Biomarkers for a Binary Clinical Outcome in Early Drug Development Microarray Experiments. Submitted.