The Meta-analytic Framework for the Evaluation of Surrogate Endpoints in Clinical Trials

Geert Molenberghs

Center for Statistics
Universiteit Hasselt, Belgium
geert.molenberghs@uhasselt.be
www. censtat.uhasselt.be

Biostatistical Centre
Katholieke Universiteit Leuven, Belgium
geert.molenberghs@med.kuleuven.be www.kuleuven.ac.be/biostat/

Non-clinical Statistics Conference, September 24, 2008

Motivation

- Primary motivation
\triangleright True endpoint is rare and/or distant
\triangleright Surrogate endpoint is frequent and/or close in time
- Secondary motivation: True endpoint is
\triangleright invasive
\triangleright uncomfortable
\triangleright costly
\triangleright confounded by secondary treatments and/or competing risks

Definitions

Clinical Endpoint:

A characteristic or variable that reflects how a patient feels, functions, or survives.

Biomarker:

A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

Surrogate Endpoint:

A biomarker that is intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict clinical benefit (or harm or lack of benefit or harm).

Biomarkers Definition Working Group (Clin Pharmacol Ther 2001)

Age-Related Macular Degeneration

Pharmacological Therapy for Macular Degeneration Study Group (1997)
Z : Interferon- α
S : Visual acuity at $\mathbf{6}$ months
T : Visual acuity at $\mathbf{1}$ year
N : 190 patients in 36 centers (\# patients/center $\in[2 ; 18]$)

Definition and Single-Unit Model

Prentice (Bcs 1989)
"A test of H_{0} of no effect of treatment on surrogate is equivalent to a test of H_{0} of no effect of treatment on true endpoint."

$$
\begin{gathered}
S_{j}=\mu_{S}+\alpha Z_{j}+\varepsilon_{S j} \\
T_{j}=\mu_{T}+\beta Z_{j}+\varepsilon_{T j} \\
T_{j}=\mu+\gamma S_{j}+\varepsilon_{j}
\end{gathered}
$$

Prentice's Criteria and Measures

Prentice (1989), Freedman et al (1992)

| Quantity | Estimate | Test |
| :--- | :--- | :---: | :---: |
| 1 Effect of Z on T | β | $(T \mid Z) \neq(T)$ |
| 2 Effect of Z on S | α | $(S \mid Z) \neq(S)$ |
| 3 Effect of S on T | γ | $(T \mid S) \neq(T)$ |
| 4 Effect of Z on T, given S | β_{S} | $(T \mid Z, S)=(T \mid S)$ |

Prentice's Criteria and Measures

Prentice (1989), Freedman et al (1992)

| Quantity | Estimate | Test |
| :--- | :--- | :---: | :---: |
| 1 Effect of Z on T | $\widehat{\beta}=4.12(2.32)$ | $p=0.079$ |
| 2 Effect of Z on S | $\widehat{\alpha}=2.83(1.86)$ | $p=0.13$ |
| 3 Effect of S on T | $\widehat{\gamma}=0.95(0.06)$ | $p<0.0001$ |
| 4 Effect of Z on T, given S | $\widehat{\beta_{S}}$ | |

Proportion Explained

$$
\widehat{P E}=0.65 \quad[-0.22 ; 1.51]
$$

Relative Effect

$$
\widehat{R E}=1.45 \quad[-0.48 ; 3.39]
$$

Adjusted Association

$$
\widehat{\rho}_{Z}=0.75 \quad[0.69 ; 0.82]
$$

Relationship and Problems

$$
\begin{aligned}
R E & =\frac{\beta}{\alpha} \\
\rho_{Z} & =\frac{\sigma_{S T}}{\sqrt{\sigma_{S S} \sigma_{T T}}} \\
P E & =\lambda \cdot \rho_{Z} \cdot \frac{\alpha}{\beta}=\lambda \cdot \rho_{Z} \cdot \frac{1}{R E}
\end{aligned}
$$

where

$$
\lambda^{2}=\frac{\sigma_{T T}}{\sigma_{S S}}
$$

- Very wide confidence intervals for PE
- $P E \notin[0,1]$

Use of Relative Effect and Adjusted Association

- The two new quantities have clear meaning
\triangleright Relative Effect: trial-level measure of surrogacy
Can we translate the treatment effect on the surrogate to the treatment effect on the endpoint, in a sufficiently precise way?
\triangleright Adjusted Association: individual-level measure of surrogacy
After accounting for the treatment effect, is the surrogate endpoint predictive for a patient's true endpoint?
- BUT:

The RE is based on a single trial \Rightarrow regression through the origin, based on one point!

Analysis Based on Several Trials. ..

- Context:
\triangleright multicenter trials
\triangleright meta analysis
\triangleright several meta-analyses
- Extensions:
\triangleright Relative Effect \longrightarrow Trial-Level Surrogacy How close is the relationship between the treatment effects on the surrogate and true endpoints, based on the various trials (units)?
\triangleright Adjusted Association \longrightarrow Individual-Level Surrogacy How close is the relationship between the surrogate and true outcome, after accounting for trial and treatment effects?

... Is Considered a Useful Idea

Albert et al (SiM 1998)
"There has been little work on alternative statistical approaches. A meta-analysis approach seems desirable to reduce variability. Nevertheless, we need to resolve basic problems in the interpretation of measures of surrogacy such as PE as well as questions about the biologic mechanisms of drug action."

Statistical Model

- Model:

$$
\begin{aligned}
& S_{i j}=\mu_{S i}+\alpha_{i} Z_{i j}+\varepsilon_{S i j} \\
& T_{i j}=\mu_{T i}+\beta_{i} Z_{i j}+\varepsilon_{T i j}
\end{aligned}
$$

- Error structure:

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{S S} & \sigma_{S T} \\
& \sigma_{T T}
\end{array}\right)
$$

Statistical Model

- Model:

$$
\begin{aligned}
& S_{i j}=\mu_{S i}+\alpha_{i} Z_{i j}+\varepsilon_{S i j} \\
& T_{i j}=\mu_{T i}+\beta_{i} Z_{i j}+\varepsilon_{T i j}
\end{aligned}
$$

- Trial-specific effects:

$$
\left(\begin{array}{c}
\mu_{S i} \\
\mu_{T i} \\
\alpha_{i} \\
\beta_{i}
\end{array}\right)=\left(\begin{array}{c}
\mu_{S} \\
\mu_{T} \\
\alpha \\
\beta
\end{array}\right)+\left(\begin{array}{c}
m_{S i} \\
m_{T i} \\
a_{i} \\
b_{i}
\end{array}\right) \quad D=\left(\begin{array}{cccc}
d_{S S} & d_{S T} & d_{S a} & d_{S b} \\
& d_{T T} & d_{T a} & d_{T b} \\
& & d_{a a} & d_{a b} \\
& & & d_{b b}
\end{array}\right)
$$

ARMD: Trial-Level Surrogacy

- Prediction:
\triangleright What do we expect?

$$
E\left(\beta+b_{0} \mid m_{S 0}, a_{0}\right)
$$

\triangleright How precisely can we estimate it ?

$$
\operatorname{Var}\left(\beta+b_{0} \mid m_{S 0}, a_{0}\right)
$$

- Estimate:
$\triangleright R_{\text {trial }}^{2}=0.692(95 \%$ C.I. $[0.52 ; 0.86])$

ARMD: Individual-Level Surrogacy

- Individual-level association:

$$
\rho_{Z}=R_{\text {indiv }}=\operatorname{Corr}\left(\varepsilon_{T i}, \varepsilon_{S i}\right)
$$

- Estimate:

$\triangleright R_{\text {indiv }}^{2}=0.483$ (95\% C.I. [0.38; 0.59] $)$
$\triangleright R_{\text {indiv }}=0.69(95 \%$ C.I. $[0.62 ; 0.77])$
\triangleright Recall $\rho_{Z}=0.75$ (95\% C.I. [0.69; 0.82])

A Number of Case Studies

	Age-related macular degeneration	Advanced ovarian cancer	Advanced colorectal cancer
Surrogate True	Vis. Ac. (6 months) Vis. Ac. (1 year)	Progr.-free surv. Overall surv.	Progr.-free surv. Overall surv.
Prentice Criteria 1-3 (p value)			
Association (Z, S) Association (Z, T) Association (S, T)	$\begin{gathered} 0.31 \\ 0.22 \\ <0.001 \end{gathered}$	$\begin{gathered} 0.013 \\ 0.08 \\ <0.001 \end{gathered}$	$\begin{gathered} 0.90 \\ 0.86 \\ <0.001 \end{gathered}$
Single-Unit Validation Measures (estimate and 95\% C.I.)			
Proportion Explained Relative Effect Adjusted Association	$\begin{gathered} \hline 0.61[-0.19 ; 1.41] \\ 1.51[-0.46 ; 3.49] \\ 0.74[0.68 ; 0.81] \end{gathered}$	$\begin{aligned} & 1.34[0.73 ; 1.95] \\ & 0.65[0.36 ; 0.95] \\ & 0.94[0.94 ; 0.95] \end{aligned}$	$\begin{gathered} 0.51[-4.97 ; 5.99] \\ 1.59[-15.49,18.67] \\ 0.73[0.70,0.76] \end{gathered}$
Multiple-Unit Validation Measures (estimate and 95\% C.I.)			
$\begin{gathered} R_{\text {trial }}^{2} \\ R_{\text {indiv }}^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.69[0.52 ; 0.86] \\ & 0.48[0.38 ; 0.59] \\ & \hline \end{aligned}$	$\begin{aligned} & 0.94[0.91 ; 0.97] \\ & 0.89[0.87 ; 0.90] \end{aligned}$	$\begin{aligned} & 0.57[0.41,0.72] \\ & 0.57[0.52,0.62] \end{aligned}$

Overview: Case Studies

	Schizoph. Study I (138 units)	Schizoph. Study I (29 units)	Schizoph. Study II
Surrogate True	$\begin{gathered} \hline \text { - PANSS - } \\ -\mathrm{CGI}- \end{gathered}$		
Prentice Criteria 1-3 (p value)			
Association (Z, S) Association (Z, T) Association (S, T)			$\begin{gathered} \hline 0.835 \\ 0.792 \\ <0.001 \end{gathered}$
Single-Unit Validation Measures (estimate and 95\% C.I.)			
Proportion Explained Relative Effect Adjusted Association	$\begin{gathered} \hline 0.81[\\ 0.055 \\ 0.72[\end{gathered}$	$\begin{gathered} ; 1.67] \\ ; 0.16] \\ ; 0.75] \end{gathered}$	$\begin{gathered} -0.94[\infty] \\ -0.03[\infty] \\ 0.74[0.69 ; 0.79] \end{gathered}$
Multiple-Unit Validation Measures (estimate and 95\% C.I.)			
$\begin{aligned} & R_{\text {trial }}^{2} \\ & R_{\text {indiv }}^{2} \end{aligned}$	$0.56[0.43 ; 0.68]$ $0.51[0.47 ; 0.55]$	$\begin{aligned} & \hline 0.58[0.45 ; 0.71] \\ & 0.52[0.48 ; 0.56] \end{aligned}$	$\begin{aligned} & \hline 0.70[0.44 ; 0.96] \\ & 0.55[0.47 ; 0.62] \end{aligned}$

Two Longitudinal Endpoints

First Stage

$$
\left.\begin{array}{ll}
T_{i j t}=\mu_{T_{i}}+\beta_{i} Z_{i j}+\theta_{T_{i}} t_{i j t}+\varepsilon_{T_{i j t}} & \Sigma_{i}=\left(\begin{array}{cc}
\sigma_{T T i} & \sigma_{S T i} \\
S_{i j t} & =\mu_{S_{i}}+\alpha_{i} Z_{i j}+\theta_{S_{i}} t_{i j t}+\varepsilon_{S_{i j t}}
\end{array} \quad \sigma_{S S i}\right.
\end{array}\right) \otimes R_{i}
$$

Second Stage

$$
\left(\begin{array}{c}
\mu_{S_{i}} \\
\mu_{T_{i}} \\
\alpha_{i} \\
\beta_{i} \\
\theta_{S_{i}} \\
\theta_{T_{i}}
\end{array}\right)=\left(\begin{array}{c}
\mu_{S} \\
\mu_{T} \\
\alpha \\
\beta \\
\theta_{S} \\
\theta_{T}
\end{array}\right)+\left(\begin{array}{c}
m_{S_{i}} \\
m_{T_{i}} \\
a_{i} \\
b_{i} \\
\tau_{S_{i}} \\
\tau_{T_{i}}
\end{array}\right)
$$

Evaluation Measures?

A Sequence of Measures

- Variance Reduction Factor VRF:

$$
V R F=\frac{\Sigma_{i}\left\{\operatorname{tr}\left(\Sigma_{T T i}\right)-\operatorname{tr}\left(\Sigma_{(T \mid S) i}\right)\right\}}{\Sigma_{i} \operatorname{tr}\left(\Sigma_{T T i}\right)}
$$

- Canonical-correlation Root-statistic Based Measure θ_{p} :

$$
\theta_{p}=\sum_{i} \frac{1}{N p_{i}} \operatorname{tr}\left\{\left(\Sigma_{T T i}-\Sigma_{(T \mid S) i}\right) \Sigma_{T T i}^{-1}\right\}
$$

- Canonical-correlation Root-statistic Based Measure R_{Λ}^{2} :

$$
R_{\Lambda}^{2}=\frac{1}{N} \sum_{i}\left(1-\Lambda_{i}\right),
$$

where

$$
\Lambda_{i}=\frac{\left|\Sigma_{i}\right|}{\left|\Sigma_{T T i}\right|\left|\Sigma_{S S i}\right|}
$$

A Sequence of Measures

- The Likelihood Reduction Factor LRF:

\triangleright Consider a pair of models:

$$
\begin{aligned}
& g_{T}\left(T_{i j}\right)=\mu_{T_{i}}+\beta_{i} Z_{i j} \\
& g_{T}\left(T_{i j}\right)=\theta_{0_{i}}+\theta_{1 i} Z_{i j}+\theta_{2 i} S_{i j}
\end{aligned}
$$

$\triangleright G_{i}^{2}$ log-likelihood ratio for comparison of both models
\triangleright The proposed measure:

$$
\mathrm{LRF}=1-\frac{1}{N} \sum_{i} \exp \left(-\frac{G_{i}^{2}}{n_{i}}\right)
$$

An Information-theoretic Approach

- Can we unify all previous proposals?
- Shannon (1916-2001) defined entropy of a distribution:

$$
h(Y)=E[-\log (f(Y))]
$$

- Conditional version:

$$
h(Y \mid X=x)=E_{Y \mid X}\left[\log f_{Y \mid X}(Y \mid X=x)\right] \quad \text { and } \quad I(Y \mid X)=E_{X}[h(Y \mid X=x)]
$$

- The amount of uncertainty (entropy) that is expected to be removed if the value of X is known:

$$
I(X, y)=h(Y)-h(Y \mid X)
$$

An Information-theoretic Approach

- Informational measure of association R_{h}^{2} :

$$
R_{h}^{2}=R_{h}^{2}=\frac{E P(Y)-E P(Y \mid X)}{E P(Y)}
$$

with

$$
E P(X)=\frac{1}{(2 \pi e)^{n}} e^{2 h(X)}
$$

- Version for N trials:

$$
R_{h}^{2}=\sum_{i=1}^{N_{q}} \alpha_{i} R_{h i}^{2}=1-\sum_{i=1}^{N_{q}} \alpha_{i} e^{-2 I_{i}\left(S_{i}, T_{i}\right)}
$$

where the α_{i} form a convex combination.

Relationships With Previous Definitions

- All have desirable behavior within $[0,1]$ for continuous endpoints
- All can be embedded within a family
- θ_{p} is symmetric in S and T whereas the VRF is not
- θ_{p} is invariant w.r.t. linear bijective transformations; VRF only when they are orthogonal
- R_{Λ}^{2} and later ones also apply to non-Gaussian settings

Relationships With Previous Definitions

- Later ones specialize to earlier ones
- They all reduce to the $R_{\text {indiv }}^{2}$ for cross-sectional Gaussian outcomes
- Longitudinal normal setting:

$$
R_{h}^{2}=R_{\Lambda}^{2} \quad \text { if } \quad \alpha_{i}=N_{q}^{-1}
$$

- General setting:

$$
\mathrm{LRF} \xrightarrow{P} R_{h}^{2}
$$

when the number of subjects per trial approaches ∞

Other Implications

- Relationship with Prentice's main criterion and the Data Processing Inequality:

$$
\begin{aligned}
f(T \mid Z, S)=F(T \mid S) & \Rightarrow \\
& \Rightarrow \quad I(T, Z \mid S)=0 \\
& \Rightarrow \quad I(Z, S) \geq I(Z, T)
\end{aligned}
$$

- PE and R_{h}^{2} :

$$
\mathrm{PE}=1-\frac{\beta_{S}}{\beta} \quad \longleftrightarrow \quad R_{h}^{2}=1-\frac{\mathrm{EP}\left(\beta_{i} \mid \alpha_{i}\right)}{\operatorname{EP}\left(\beta_{i}\right)}
$$

Fano's Inequality

- Fano's Inequality:

$$
E\left[(T-g(S))^{2}\right] \geq E P(T)\left(1-R_{h}^{2}\right)
$$

\triangleright Left hand side is prediction error
\triangleright Applies regardless of distributional form and predictor function $g(\cdot)$
\triangleright "How large does R_{h}^{2} have to be?" \longleftarrow The answer depend crucially on the power entropy of T

Schizophrenia Trial

- Continuous Outcomes:
$\triangleright V R F_{\text {ind }}=0.39$ with 95% C.I. $[0.36 ; 0.41]$
$\triangleright R_{\text {trial }}^{2}=0.85$ with 95% C.I. $[0.68 ; 0.95]$
- Binary Outcomes:

Parameter	Estimate	95\% C.I.
	Trial-level $R_{\text {trial }}^{2}$ measures	
Information-theoretic	0.49	$[0.21,0.81]$
Probit	0.51	$[0.18,0.78]$
Plackett-Dale	0.51	$[0.21,0.81]$
R_{h}^{2}	Individual-level measures	
$R_{h \text { max }}^{2}$	0.27	$[0.24,0.33]$
Probit	0.39	$[0.35,0.48]$
Plackett-Dale ψ	0.67	$[0.55,0.76]$
Fano's lower-bound	25.12	$[14.66 ; 43.02]$

Age-related Macular Degeneration Trial

- Both outcomes binary:

Parameter	Estimate	[95\% C.I.]
$R_{\text {trial }}^{2}$	0.3845	$[0.1494 ; 0.6144]$
R_{h}^{2}	0.2648	$[0.2213 ; 0.3705]$
$R_{h \max }^{2}$	0.4955	$[0.3252 ; 0.6044]$

Advanced Colorectal Cancer

S : Time to progression/death
T : Time to death

- Models:

$$
\begin{aligned}
& h_{i j}(t)=h_{i 0}(t) \exp \left\{\beta_{i} Z_{i j}\right\} \\
& h_{i j}(t)=h_{i 0}(t) \exp \left\{\beta_{S i} Z_{i j}+\gamma_{i} S_{i j}(t)\right\}
\end{aligned}
$$

Advanced Colorectal Cancer

Estimate (95\% C.I.)

Parameter

Dataset I
 Dataset II

Trial-level measures
$\hat{R}_{\text {trial }}^{2}$ (separate models)
0.82 [0.40;0.95]
0.85 [0.53;0.96]
$\hat{R}_{\text {trial }}^{2}$ (Clayton copula)
0.88 [0.59;0.98]
0.82 [0.43;0.95]
$\hat{R}_{\text {trial }}^{2}$ (Hougaard copula)
0.75 [0.00;1.00]

Individual-level measures

\hat{R}_{h}^{2}	$0.84[0.82 ; 0.85]$	$0.83[0.82 ; 0.85]$
Percentage of censoring	19%	55%

Prediction in a New Trial

- Consider a new trial $i=0$:

$$
S_{0 j}=\mu_{S 0}+\alpha_{0} Z_{0 j}+\varepsilon_{S 0 j}
$$

- Prediction variance:

$$
\operatorname{Var}\left(\beta+b_{0} \mid \mu_{S 0}, \alpha_{0}, \vartheta\right) \approx f\left\{\operatorname{Var}\left(\widehat{\mu}_{S 0}, \widehat{\alpha}_{0}\right)\right\}+f\{\operatorname{Var}(\widehat{\vartheta})\}+\left(1-R_{\text {trial }}^{2}\right) \operatorname{Var}\left(b_{0}\right)
$$

- where
$\triangleright f(\cdot)$ are appropriate functions of the parameters involved
$\triangleright \vartheta$ contains all fixed effects

Prediction in a New Trial

- Meaning of the three terms:
\triangleright Estimation error in both the meta-analysis and the new trial: all three terms apply
\triangleright Estimation error in the meta-analysis only:

$$
\operatorname{Var}\left(\beta+b_{0} \mid \mu_{S 0}, \alpha_{0}, \vartheta\right) \approx f\{\operatorname{Var}(\widehat{\vartheta})\}+\left(1-R_{\text {trial }}^{2}\right) \operatorname{Var}\left(b_{0}\right)
$$

\triangleright No estimation error:

$$
\operatorname{Var}\left(\beta+b_{0} \mid m_{S 0}, a_{0}\right)=\left(1-R_{\text {trial }}^{2}\right) \operatorname{Var}\left(b_{0}\right)
$$

The Surrogate Threshold Effect

- STE: The smallest treatment effect upon the surrogate that predicts a significant treatment effect on the true endpoint
- Various versions:
\triangleright STE $_{N, n}$: STE for a finite meta-analysis and a finite new trial
\triangleright STE $_{N, \infty}$: STE for a finite meta-analysis and an infinite new trial
$\triangleright \mathrm{STE}_{\infty, \infty}$: STE when both the meta-analysis and the new trial are infinitely large

Practical Conclusions

- Are surrogate endpoints useful in practice?
- An investigator wants to be able to predict the effect of treatment on T, based on the observed effect of treatment on S.
- $R_{\text {trial }}^{2}, R_{\text {indiv }}^{2},(\psi, \tau)$, VRF $, \theta_{p}, R_{\Lambda}^{2}$ LRF $, R_{h}^{2}, \ldots$: quantification of surrogacy in a meta-analytic setting
- Prediction: useful in a new trial

Methodological Conclusions

- Basis for new assessment strategy
\triangleright trial-level surrogacy
\triangleright individual-level surrogacy
- Requirements
\triangleright Was required: joint model for surrogate and true endpoint
\triangleright Was required: acknowledgment of the hierarchical structure
\triangleright Matters simplify with information-theoretic approach

