Combination of Independent Component Analysis and statistical modeling for the identification of metabonomic biomarkers

Réjane Rousseau (Institut de Statistique, UCL, Belgium)

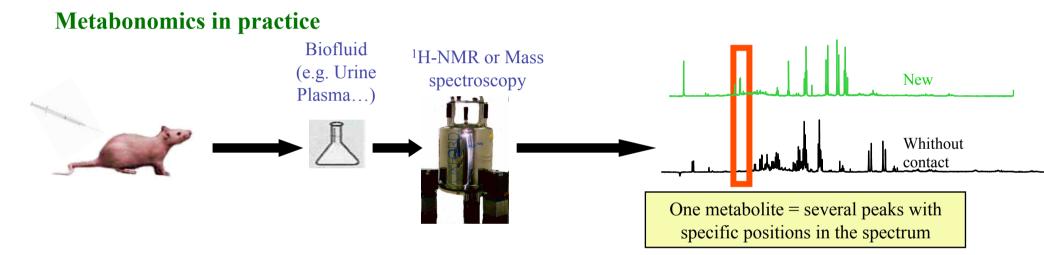
Joint work with Bernadette Govaerts and Michel Verleysen (UCL)



## Metabonomics and biomarker identification

#### What is metabonomics ?

The study of biological responses to a stressor (ex: drug, disease) in the level of metabolites



#### **Biomarker identification**

Find which metabolite or which part of the spectrum is alterated by a factor of interest (drug, disease...)

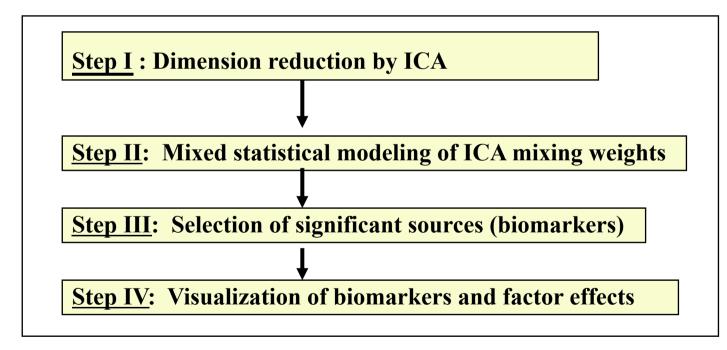
#### **Objective of the talk:**

to propose a methodology combining ICA and statistical modeling for biomarker identification in <sup>1</sup>H-NMR spectroscopy.



## **Outline of the talk**

- Typical steps of a metabonomic study for the identification of biomarkers
- Overview of the methodology based on ICA and statistical modeling
- Data used in the talk
- Details of the methodology

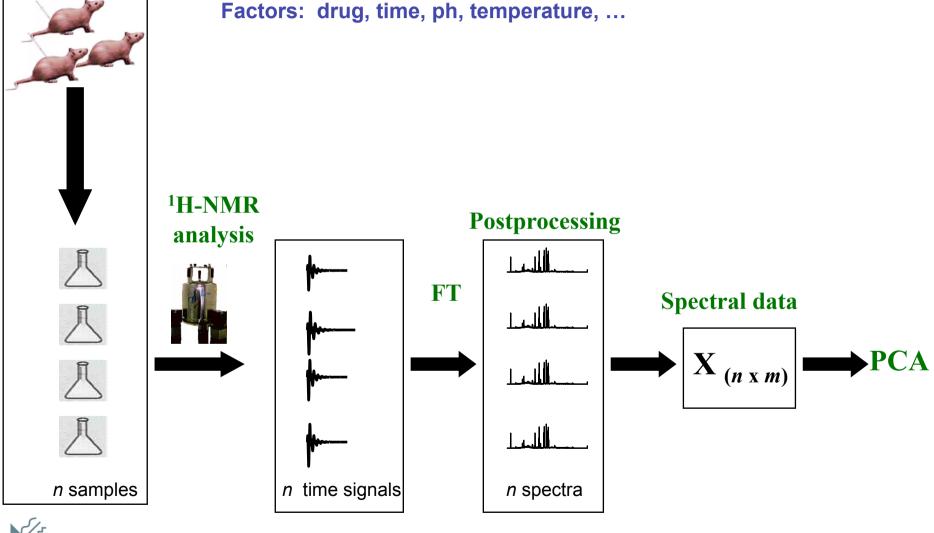


• Conclusions.



# Typical steps of a metabonomic study

#### Collection of biofluid samples under different conditions



# Typical steps of a metabonomic study

#### Spectral

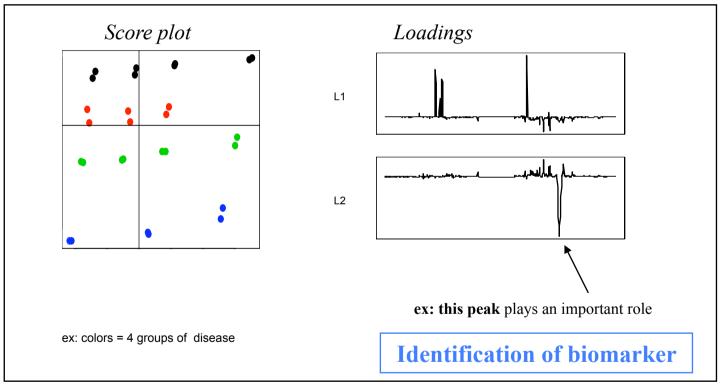
 $\geq$ 

PCA:

data X (nxm)

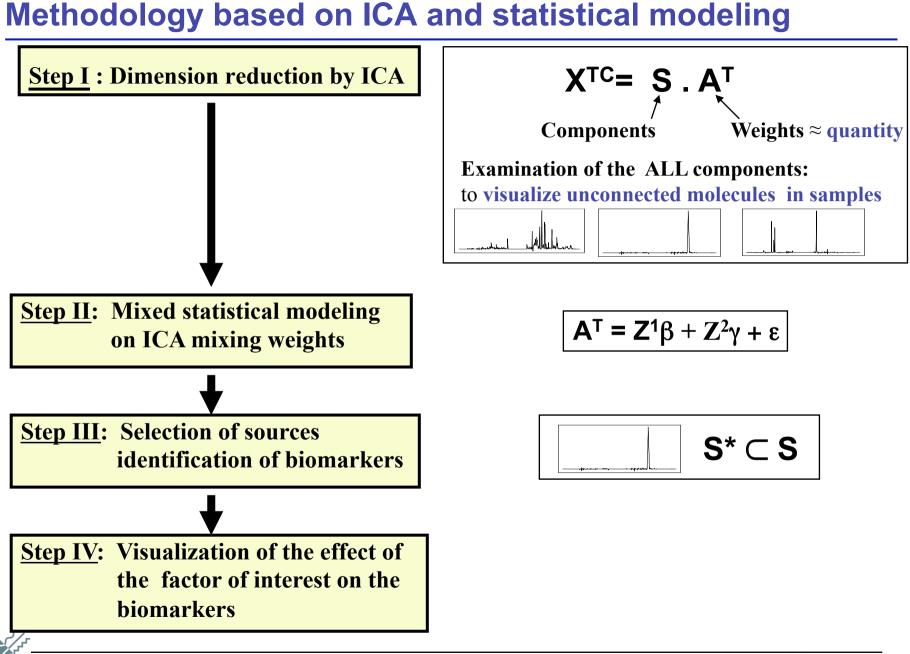
Reduction of the dimension to obtain uncorrelated principal components

**Examination of the 2 first components to identify biomarkers** 



This is only powerful if the biological question is related to the highest variance in the dataset!





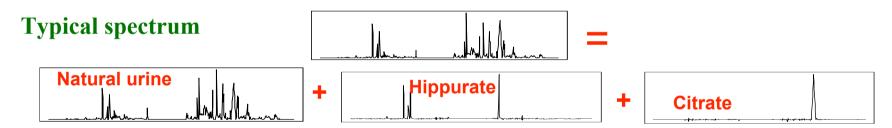
## Data used in this talk

#### • Prepared samples

- > to know the spectral regions that should be identified as biomarkers
- Mixtures of urine with citrate and hippurate
- > 14 experimental conditions -2 replicates per condition = 28 samples

#### • Spectra postprocessing

- ➢ Using Bubble a tool developped by Eli Lilly optimised for urine samples
- Normalisation : unit sum Resolution : 600ppms



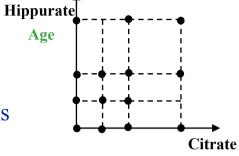
#### **Hypothetical question**

- Assimilate the concentration of citrate as a **drug dose** received by the subject of hippurate as the **age** of the subject
- ➢ Goal = to find a biomarker for the drug dose

i.e. discover « automatically » the citrate peak from the 28 spectra.



•



Drug dose

### Methodology based on ICA and statistical modeling

# $X^{TC} = S A^{T}$ **Step I : Dimension reduction by ICA** $\triangleright$ What is ICA? Dimension reduction by ICA > Illustration on the example Comparison of ICA and PCA **Step II:** Mixed statistical modeling of ICA mixing weights **<u>Step III</u>: Selection of significant sources (biomarkers)**

**<u>Step IV</u>: Visualization of biomarkers and factor effects** 



# **Step I : What is Independent component analysis (ICA)?**

#### > The idea:

• Each observed vector of data (spectrum) is a linear combination of unknown independent (not only linearly independent) components

$$x_i = \sum_{k=1}^{i} s_k a_{ki} = s_1 a_{1i} + s_2 a_{2i} + \dots + s_l a_{li}$$

• The ICA provides the independent components (sources,  $s_k$ ) which have created a vector of data and the corresponding mixing weights  $a_{ki}$ .

#### How do we estimate the sources?

with linear transformations of observed signals that maximize the **independence** of the sources.

#### How do we evaluate this property of independence?

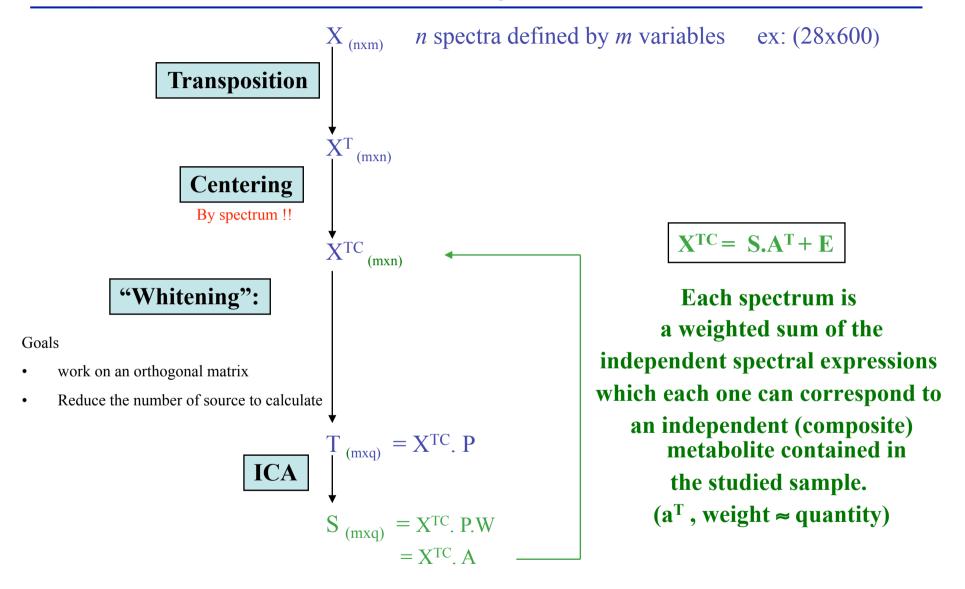
Using the **Central Limit Theorem** (\*), the independence of sources components can be reflect by non-gaussianity.

Solving the ICA problem consists of finding a **demixing matrix which maximises the non**gaussianity of the estimated sources under the constraint that their variances are constant.

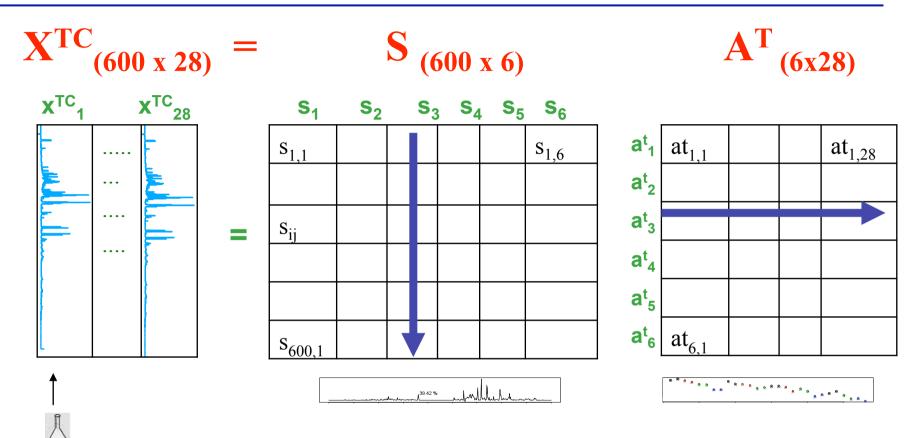
#### **Fast-ICA algorithm:**

- uses an objective function related to **negentropy**
- uses fixed-point iteration scheme.

#### **Step I : dimension reduction by ICA :**

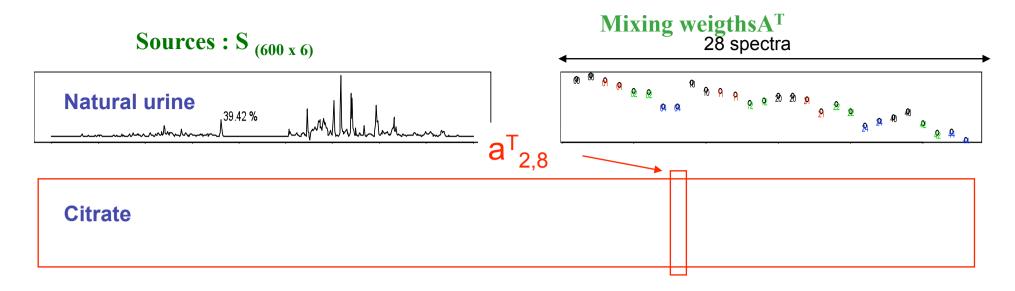


### **Step I : Example**



- Urine
- + citrate

+ hippurate



#### Hippurate

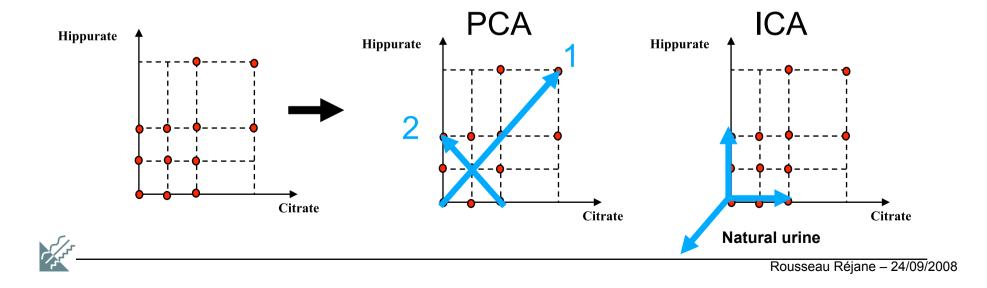
51-

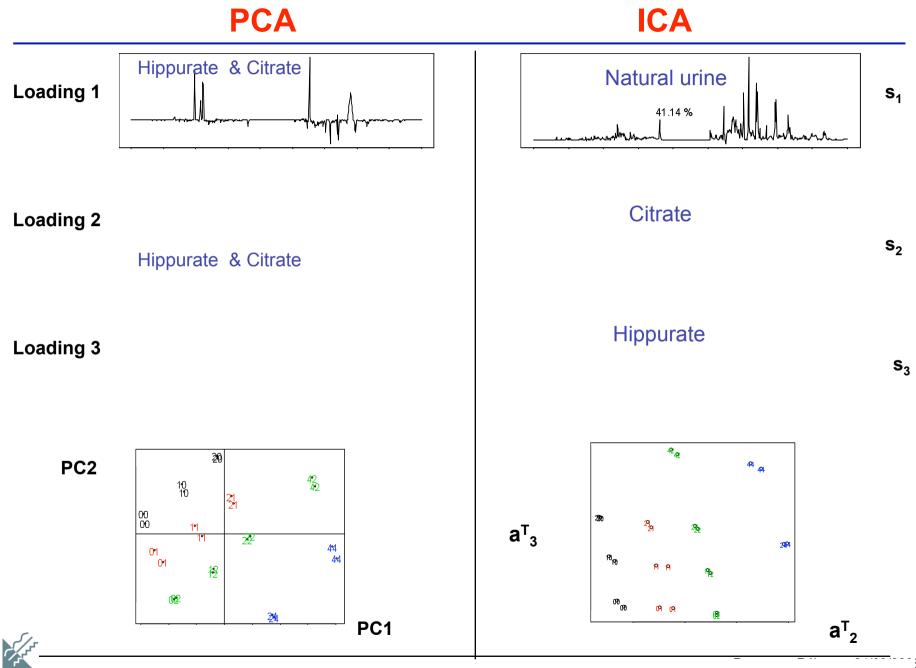
# **Step I: Comparison with the usual PCA**

• Similarities: projection methods linearly decomposing multi-dimensional data into components.

#### • Differences:

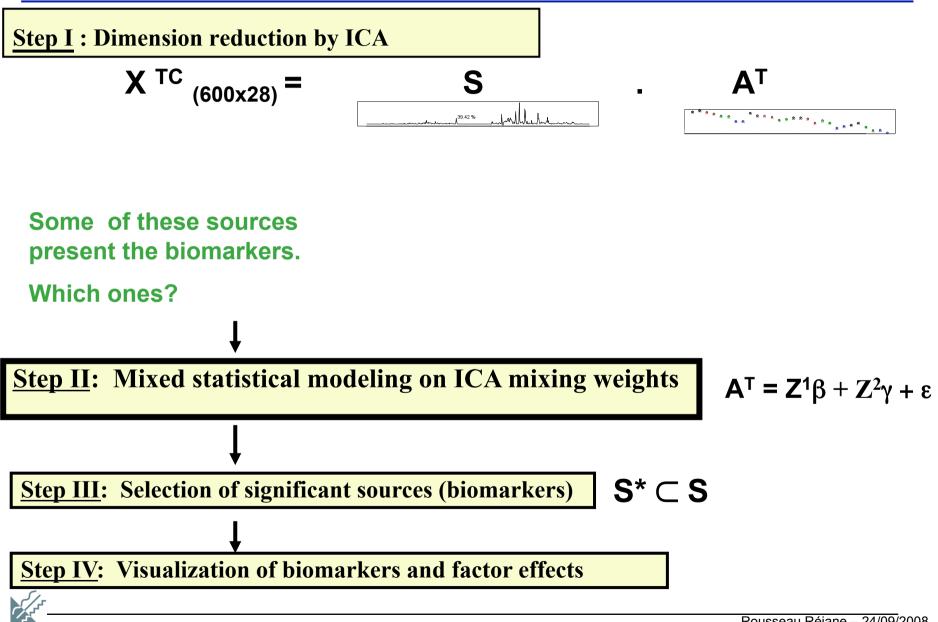
- > ICA uses  $X^{T}_{(mxn)}$  (PCA uses  $X_{(nxm)}$ )
- $\succ$  The number of sources, q, has to be fixed in ICA
- Sources are not naturally sorted according to their importance in ICA
- > The **independence condition** = the biggest advantage of the ICA:
  - independent components (ICA) are more meaningful than uncorrelated components (PCA)
  - more suitable for our question in which the component of interest are not always in the direction with the maximum variance.





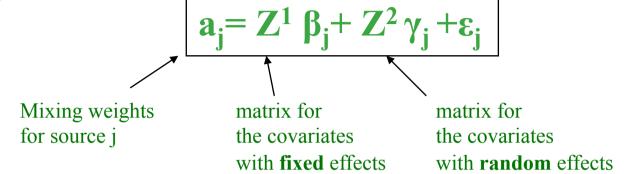
<sup>- -</sup> 3

### Methodology based on ICA and statistical modeling



## **Step II: statistical modeling of ICA mixing weights**

For each of the q sources s<sub>j</sub>, we assume a linear relation between its vector of weights and the design variables:



- > Models with fixed and random effects covariates : Mixed model:  $a_j = Z^1 \beta_j + Z^2 \gamma_j + \varepsilon_j$
- > Models with only random effects covariates :  $a_j = Z^2 \gamma_j + \varepsilon_j$

 $\rightarrow$  ex: biomarker to explore variance component (machines, subjects, laboratories)

- > Models with only fixed effects covariates :  $a_j = Z^1 \beta_j + \varepsilon_j$ 
  - <u>Case 1</u>: categorical covariates: ANOVA

 $\rightarrow$  ex: biomarker to discriminate 3 groups of subjects: disease1, disease2 & sane

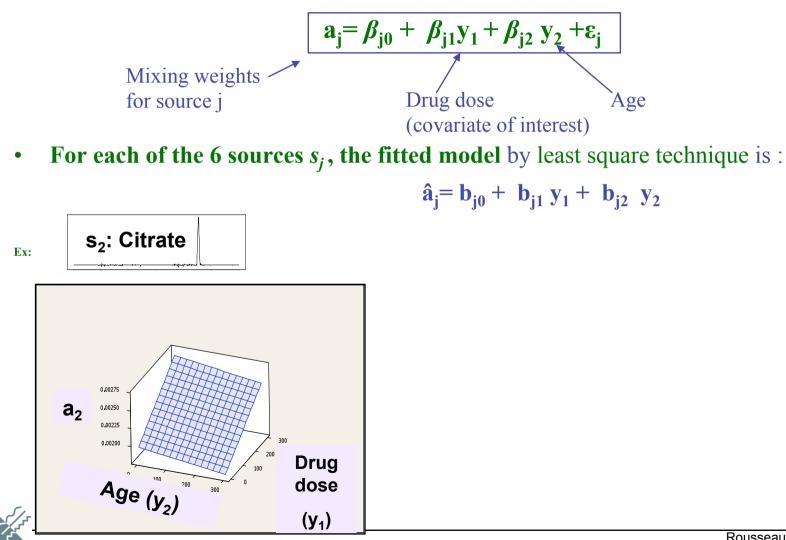
• <u>Case 2</u>: quantitative covariates : linear regression

 $\rightarrow$  ex: biomarker to explore the severity of an illness, the concentration of a drug

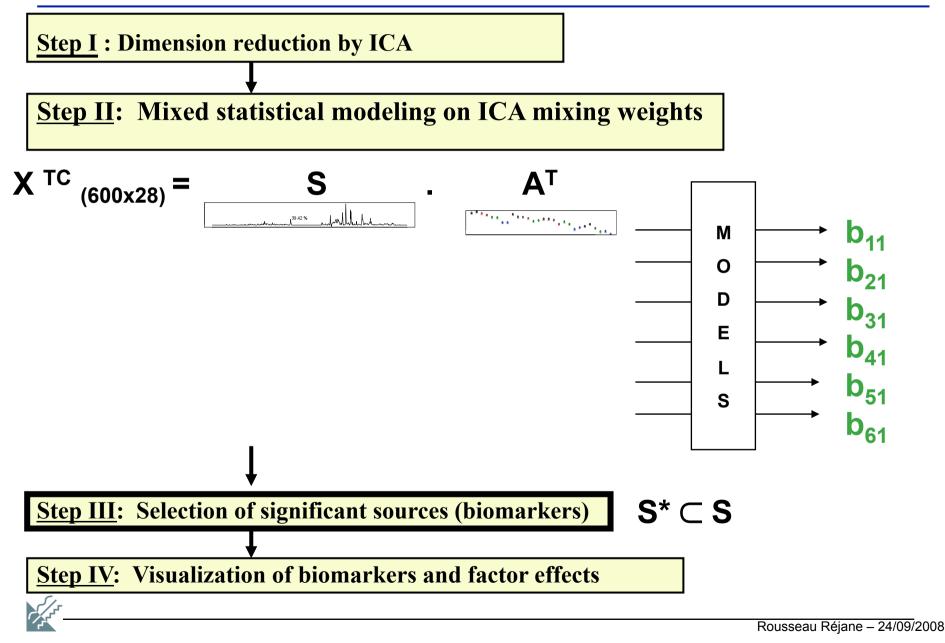


### **Step II: Fit a model: example**

 For each of the q = 6 recovered s<sub>j</sub>, we construct a multiple linear regression model with 2 fixed quantitative covariates and no interaction:

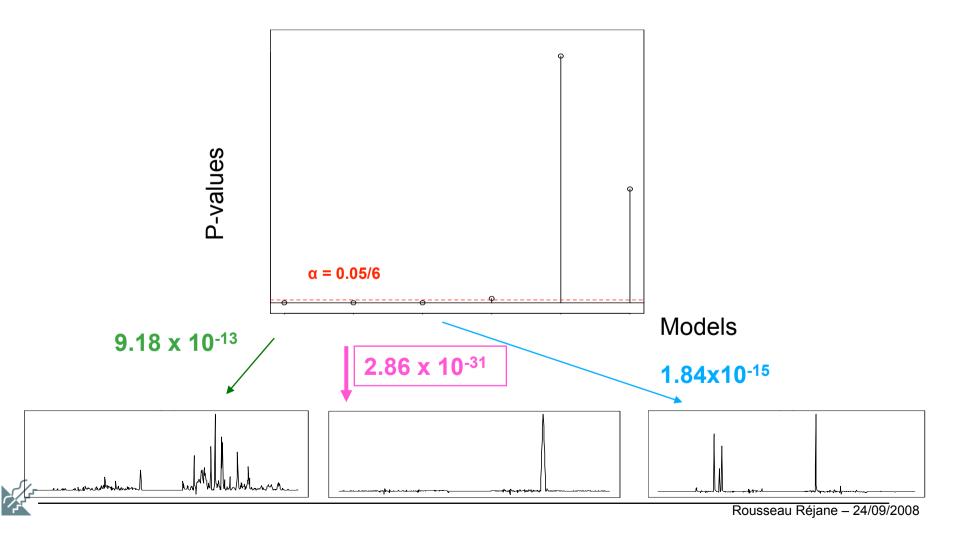


### Methodology based on ICA and statistical modeling

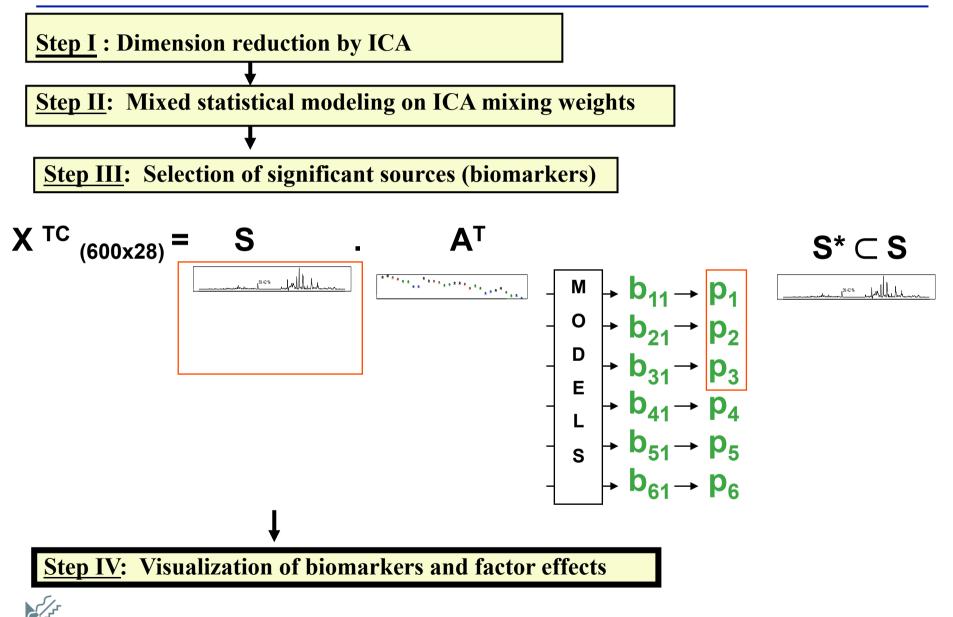


#### Step III: Selection of significant sources, biomarker identification

- Goal: we want to select the sources presenting a significant effect of the covariate of interest on their weights.
- For each source, F or t test of hypothesis and Bonferroni correction of the level of significance.



### Methodology based on ICA and statistical modeling



#### **Step IV : Comparison of the intensities in biomarkers**

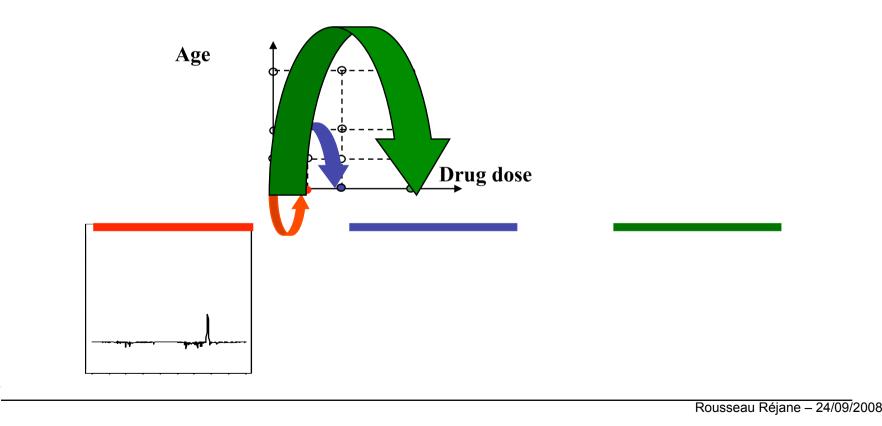
- **Goal:** visualize the effects on the biomarker caused by  $\neq$  changes in the variable of interest.
- Choose values of the variable of interest:

```
ex: y_1 = drug dose
```

 $y_1^1$ : a first value of reference  $y_1^2$ : a new value of interest of  $y_k$ 

 $C_1 = S^* \beta_k^* (y_k^2 - y_k^1)$ 

> Compute contrast: ex: the effect on the biomarker of the change of  $y_1$  from  $y_1^1$  to  $y_1^2$ :



# **Conclusions:**

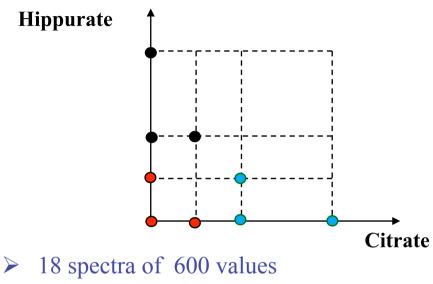
- With the presented methodology combining ICA with statistical modeling,
  - we visualize the independent metabolites contained in the studied biofluid (through the sources) and their quantity (through the mixing weights)
  - ➤ we identify biomarkers or spectral regions changing significantly according to the factor of interest by a selection of source.
  - we compare the effects on these spectral biomarkers caused by different changes of the factor of interest.
- In comparison with the PCA, ICA:
  - gives more biologically meaningful and natural representations of this data.



# Thank you for your attention



### **Example2: the data**



> 1 characteristic in Y

X(18x600) Y (18x1)  $y_1$  = disease group of the rat (qualitative)

> We want biomarkers for group of disease described in  $y_1$ .

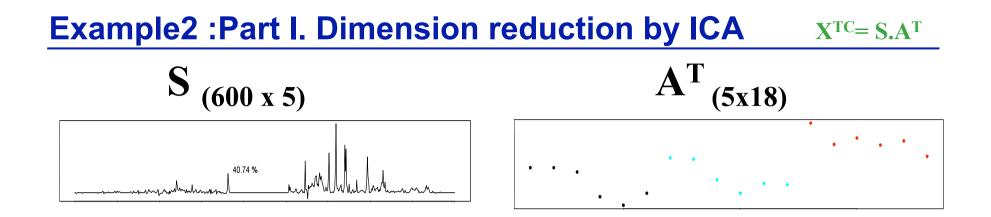
 $\rightarrow$  a model with qualitative covariates



Group 1= disease 1

Group 2= disease 2

**Group 3= no disease** 



#### Example 2: Part II: biomarkers discovery through statistical modeling

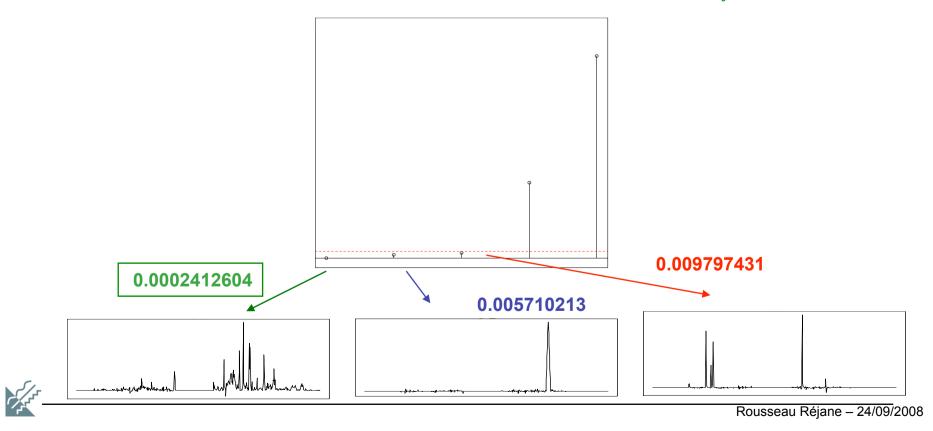
**<u>Step 1</u>**: Fit a model on A<sup>T</sup>

Models with only a categorical covariate with fixed effects: ANOVA I

 $a_j = Z^1 \beta_j + \varepsilon_j$ 

#### **<u>Step 2</u>: Biomarker identification:**

- ▶ For each of the q recovered  $s_j$ , test the effect of  $y_1 \rightarrow F_j$  statistics  $\rightarrow p_j$
- **Bonferroni correction:** select, in a (m x r) matrix S\*, the r sources with  $p_i < 0.05/q$



### **<u>Step 3</u>**: Comparison of the intensities in biomarkers

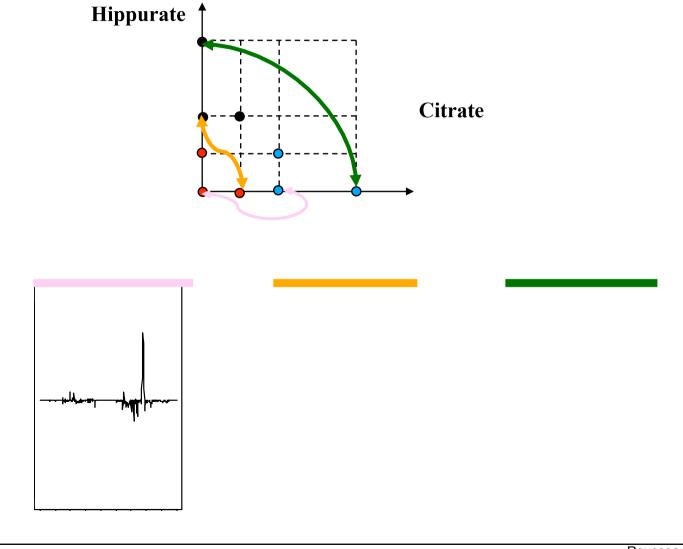
- > Goal: comparison of the effects on the biomarker caused by  $\neq$  changes in y<sub>k</sub>.
- > Choose 3 or more values of  $y_k$ :
  - $y_k^1$ : a first value of reference of  $y_k$
  - $y_k^2$ : a new value of interest of  $y_k$
  - $y_k^3$ : a second new value of interest of  $y_k$
- Compute:
  - The effect on the biomarker of the change of  $y_k$  from  $y_k^1$  to  $y_k^2$ :  $C_1 = S^* \beta_k^* (y_k^2 - y_k^1)$
  - The effect on the biomarker of the change of  $y_k$  from  $y_k^1$  to  $y_k^3$ :





#### **<u>Step 3</u>: Comparison of the intensities in biomarkers**

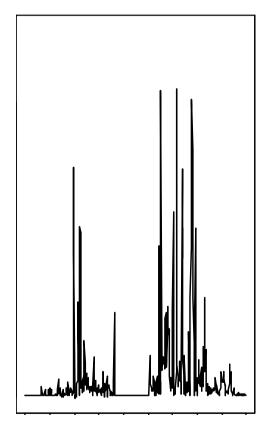
Goal: comparison of the effects on the biomarker caused by the changes of group.



# Others slides



# **Example 2: the reconstructed spectra**





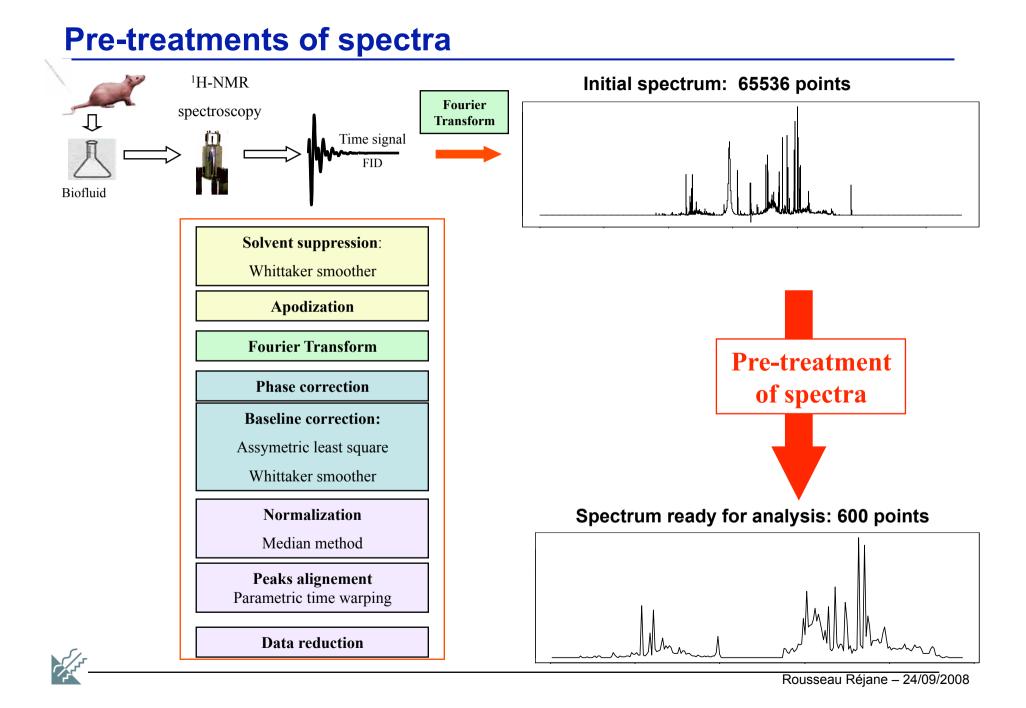
Two disated measure of non-gaussiality are the furthelic (the fourth-order constant) and the pagentropy. Although the also of merchaning the kurtosic is more simple, it can be very solutive to carfine.[11] noter in formule in instant? We used an algorithm based on the maximization of the mgentropy, the FactOCA algorithm proposed by Hyvienion.[12] Entropy of a random variable Y, which is the basic entropy of information theory, is defined as:

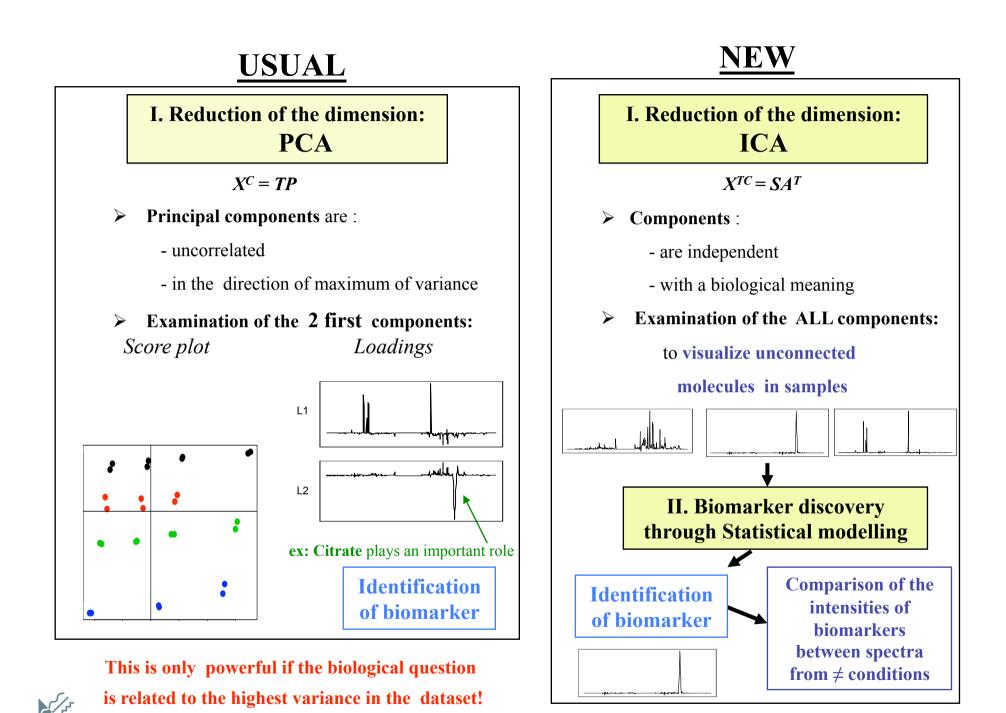
$$H(Y) = -\int f_F(q) dq (f_V(q)) dq \qquad (3)$$

A result of fallormation Theory is that of all random variables of equal variance the normal one has the largest entropy. The algorithm mes a contrast function called the Negentropy J .defined by:

$$J(V) = H(V_{growt}) - H(V) \qquad (3)$$



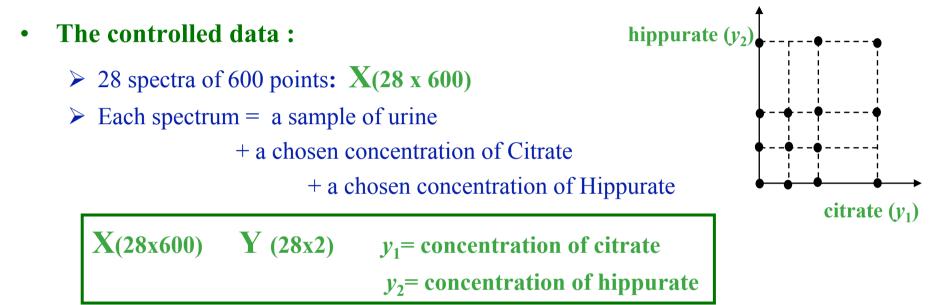




### **Example: controlled data**

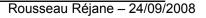
#### • Advantage of controlled data:

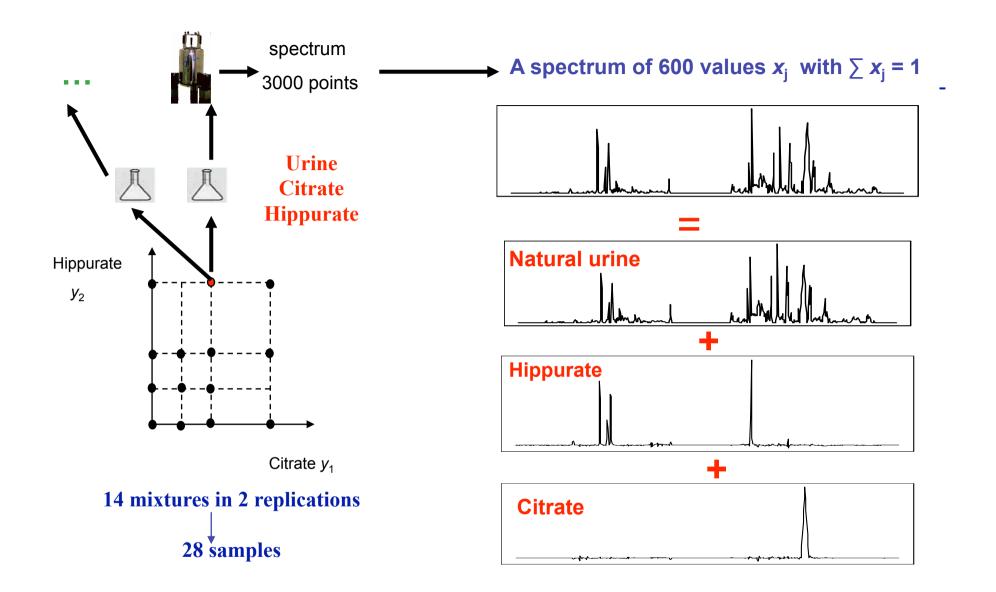
we know the spectral regions that should be identified as biomarkers.



• We need a biomarker to detect changes of the level of citrate described by  $y_1$ « Which are the spectral regions  $x_j$  the most altered when the  $y_1$  changes?» Spectral regions corresponding to Citrate = the biomarkers to identify.







The biomarkers to identify.= spectral regions corresponding to Citrate



## Step II: Fit a model: example

• For each of the q = 6 recovered  $s_{j}$ , we construct a multiple linear regression model with 2 fixed quantitative covariates and no interaction:

$$a_{j} = \beta_{j0} + \beta_{j1}y_{1} + \beta_{j2}y_{2} + \varepsilon_{j}$$
  
Mixing weights  
for source j Drug dose Age

• For each of the q recovered  $s_i$ , the fitted model by least square technique is :

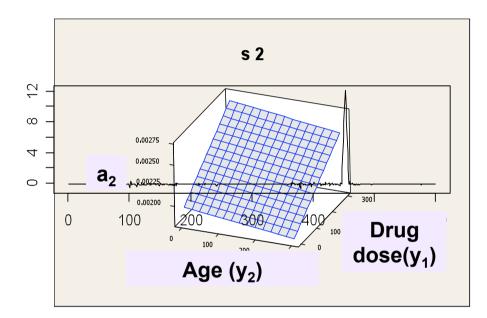
$$\hat{a}_{j} = b_{j0} + b_{j1} y_{1} + b_{j2} y_{2}$$

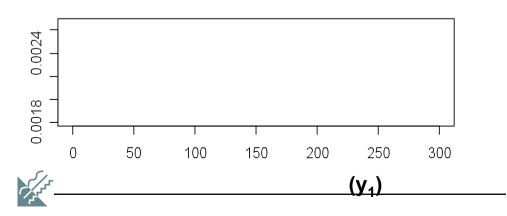
- In this example, we want to identify biomarkers for the concentration of a drug. The covariate of interest is y<sub>1</sub>.
- Output: a vector **b**<sub>1</sub> giving the 6 values of the effect of the drug concentration on each of the 6 mixing weights



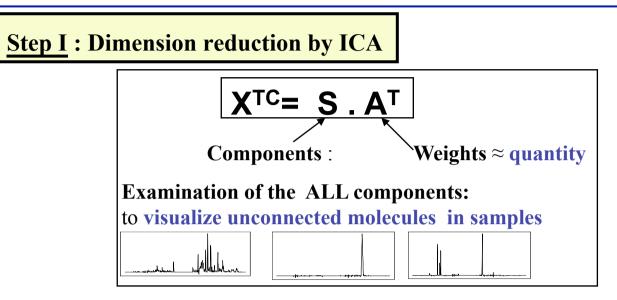
# **Step II: Fit a model: example**







### Methodology based on ICA and statistical modeling



**<u>Step II</u>**: Mixed statistical modeling on ICA mixing weights

$$\mathbf{A} = \mathbf{Z}^{1}\boldsymbol{\beta} + \mathbf{Z}^{2}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}$$

**<u>Step III</u>**: Selection of sources identification of biomarkers

**Step IV:** Visualization of the effect of the factor of interest on the biomarkers

# **Step I: Comparison with the usual PCA**

• Similarities: projection methods linearly decomposing multi-dimensional data into components.

#### • Differences:

- $\succ \text{ ICA uses } X^{T}_{(mxn)} \quad ( \text{ PCA uses } X_{(nxm)} )$
- > The number of sources, q, has to be fixed in ICA
- Sources are not naturally sorted according to their importance in ICA
- > The **independence condition** = the biggest advantage of the ICA:
  - independent components (ICA) are more meaningful than uncorrelated components (PCA)
  - more suitable for our question in which the component of interest are not always in the direction with the maximum variance.

