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Applications and Context
Statistical Models

Sigmoid curves are common in biological sciences

I Quantitative bioanalytical methods
I Immunoassays
I Bioassays
I Hill equation (1910)

I Pharmacology
I Concentration-effect or dose-response curves
I Emax model (1964)

I Growth curves
I (Population or organ) size as function of time
I Mechanistic and empirical
I Autocatalytic model (1838, 1908)
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Applications and Context
Statistical Models

Statistics: old favorite and new question

I Classic models: (four-parameter) logistic models
I Hill equation, Emax model, and autocatalytic model are the

same models: logistic models.
I They’re symmetric.

I New question: what model to use when data are asymmetric

I Answer from some quarters: “five-parameter logistic (5PL)”
(Richards model)

I Ratkowsky (1983, 1990): “significant intrinsic curvature”, “a
particularly unfortunate model”, “abuse of Occams Razor”

I Seber and Wild (1989): “Bad ill-conditioning and convergence
problems”
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Standard Approach
Relative Curvature
Close-to-Linear

Nonlinear regression

yi = f (xi ;θ) + εi , i = 1, 2, . . . , n,

I Nonlinearity of f with respect to θ: defining characteristics

I Nonlinearity of f with respect to x : incidental

I Homogeneous variance: εi ’s are i.i.d. N(0, σ2)
Maximum Likelihood = Least Squares
Objective function:

S(θ) = (y − f(θ))′ (y − f(θ))
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Standard Approach
Relative Curvature
Close-to-Linear

1st order approximation of the model

f(θ) ≈ f(θ∗) + F•(θ − θ∗),

where

F• = F•(θ
∗) =

(
∂f (xi ;θ)

∂θj

∣∣∣∣
θ=θ∗

)
n×k

Plug it in the definition of S(θ), we have a partial 2nd order
expansion of S(θ) near θ∗:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′F′•F•(θ − θ∗)
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Standard Approach
Relative Curvature
Close-to-Linear

Common framework for inference

S(θ∗)− S(θ̂) ≈ (θ̂ − θ∗)′F′•F•(θ̂ − θ∗) ≈ ε′F•(F
′
•F•)

−1F′•ε

S(θ̂) ≈ ε′(I− F•(F
′
•F•)

−1F′•)ε

Since F•(F′•F•)
−1F′• is idempotent

Local inference:

(θ̂ − θ∗)′F′•F•(θ̂ − θ∗)

S(θ̂)
∼ k

n − k
Fk,n−k

Global inference:

S(θ∗)− S(θ̂)

S(θ̂)
∼ k

n − k
Fk,n−k
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Standard Approach
Relative Curvature
Close-to-Linear

Intrinsic and parameter-effect curvatures

Expectation surface or solution locus: f(θ) ∈ Rn

Its approximation:

f(θ) ≈ f(θ∗) + F•(θ − θ∗)

I Planar assumption

I The expectation surface is close to its tangent plane.
I Intrinsic curvature: deviation at f(θ̂).

I Uniform-coordinate assumption

I Straight parallel equispaced lines in the parameter space Rk

map into straight parallel equispaced lines in the expectation
surface (as they do in the tangent plane).

I Parameter-effect curvature: deviation at f(θ̂).
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Standard Approach
Relative Curvature
Close-to-Linear

Curvatures (nonlinearity) are local properties

I The model f
I The parameters θ

I Parameterization
I Values

I The design x
I Sample size
I Values

I The particular realization of ε
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Standard Approach
Relative Curvature
Close-to-Linear

Ratkowsky’s concept: close-to-linear

I Asymptotically, i.e., n →∞ or σ → 0, all nonlinear models
behave like linear models.

I A nonlinear model is close-to-linear if it behaves like a linear
model under relative small n and moderate σ.
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Parameterization and Symmetry
Current Models
New Model

Shared parameterization to make a fair comparison

Let x denote the independent variable. Let θ be either (a, b, c , d)
for four-parameter models or (a, b, c , d , g) for five-parameter
models. Let u = f (x ;θ). We impose following conditions on the
independent variable and parameters:

I. The curve is sigmoid when u is plotted against x ;

II. When x = c , u = (a + d)/2;

III. When b > 0, d is the left asymptote and a is the right
asymptote;

IV. When b < 0, a is the left asymptote and d is the right
asymptote;

V. u is a function of x through b(x − c).
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Parameterization and Symmetry
Current Models
New Model

Symmetry and inflection point

I A sigmoid curve is symmetric if and only if ∂f /∂x is an even
function centered at the mid point c .

I Inflection point is where ∂f /∂x reaches a (local) minimum or
maximum.

I A necessary, but not sufficient, condition for symmetry: the
inflection point is unique and coincides with the mid point c .
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Parameterization and Symmetry
Current Models
New Model

Four-parameter logistic (4PL) curve

I The model:

f (x ; a, b, c , d) = d +
a− d

1 + e−b(x−c)

I Linearizing function:

logit
(

u − d

a− d

)
= b(x − c)

I Since f (x ; a, b, c , d) is the same curve as f (x ; d ,−b, c , a), the
condition of a > d or a < d is needed to resolve the
identifiability problem.
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Parameterization and Symmetry
Current Models
New Model

Richards model (“5PL”)

I The model:

f (x ; a, b, c , d , g) = d +
a− d(

1 + (21/g − 1)e−b(x−c)
)g

I Linearizing function:

log

 21/g − 1(
u−d
a−d

)−1/g
− 1

 = b(x − c)

I For g = 1, Richards model is reduced to 4PL.

I For g 6= 1, Richards model is asymmetric.
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Parameterization and Symmetry
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Richards model: flexibility and “identification problem”

I Four distinctive segments of the parameter space
R1. b > 0 and a > d : increasing function of x ; as g : 0 → +∞,

the inflection point: +∞→ log(log 2)/b + c < c ;
R2. b > 0 and a < d : decreasing function of x ; as g : 0 → +∞,

the inflection point: +∞→ log(log 2)/b + c < c ;
R3. b < 0 and a > d : decreasing function of x ; as g : 0 → +∞,

the inflection point: −∞→ log(log 2)/b + c > c ;
R4. b < 0 and a < d : increasing function of x ; as g : 0 → +∞,

the inflection point: −∞→ log(log 2)/b + c > c .

I Flexibility: each pair, R1/R4 and R2/R3, is capable to model
an inflection point anywhere in R

I “Identification problem”: pairs of curves that are not
identical, but very similar (same asymptotes, same mid point,
same inflection point), yet far apart in the parameter space.
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New Model

Four-parameter Gompertz (4PG) curve

I The model:

f (x ; a, b, c , d) = d +
a− d

2exp
(
−b(x−c)

)

I Linearizing function:

− log

(
− log2

(
u − d

a− d

))
= b(x − c)

I Asymmetric sigmoid curve
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4PG: distinctive but not quite flexible

I Four distinctive segments of the parameter space
G1. b > 0 and a > d : increasing function of x ; the inflection point

is at log(log 2)/b + c < c ;
G2. b > 0 and a < d : decreasing function of x ; the inflection point

is at log(log 2)/b + c < c ;
G3. b < 0 and a > d : decreasing function of x ; the inflection point

is at log(log 2)/b + c > c ;
G4. b < 0 and a < d : increasing function of x ; the inflection point

is at log(log 2)/b + c > c .

I G1–G4 can be thought as the limiting version of R1–R4 as
g → +∞.

I f (x ; a, b, c , d) and f (x ; d ,−b, c , a) have the same
asymptotes, the same mid point, and their inflection points
are equal distance from mid point.
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The new model: mixing two 4PG curves up linearly

I The model:

f (x) = g

(
d +

a− d

2exp
(
−b(x−c)

))+(1−g)

(
a +

d − a

2exp
(
b(x−c)

))

I Linearizing function:

Ψ−1

(
u − gd − (1− g)a

a− d
; g

)
= b(x − c)

where Ψ(t; g) = g
2exp(−t) − 1−g

2exp(t) .

I f (x ; a, b, c , d , g) = f (x ; d ,−b, c , a, 1− g): either a > d or
a < d would resolve the identifiability issue without any loss.
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I The model:

f (x) = g

(
d +

a− d

2exp
(
−b(x−c)

))+(1−g)

(
a +

d − a

2exp
(
b(x−c)

))
I Linearizing function:

Ψ−1

(
u − gd − (1− g)a

a− d
; g

)
= b(x − c)

where Ψ(t; g) = g
2exp(−t) − 1−g

2exp(t) .

I f (x ; a, b, c , d , g) = f (x ; d ,−b, c , a, 1− g): either a > d or
a < d would resolve the identifiability issue without any loss.
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Parameterization and Symmetry
Current Models
New Model

The new model: flexible and distinctive

Theorem

I When g = 1/2, it is a symmetric;

I When 1/2 < g ≤ 1, the inflection point is unique and between
log(log 2)/b + c and c;

I When 0 ≤ g < 1/2, the inflection point is unique and between
c and − log(log 2)/b + c;

I When g > 1, there are multiple inflection points, one of which
is less than log(log 2)/b + c for b > 0 or greater than
log(log 2)/b + c for b < 0;

I When g < 0, there are multiple inflection points, one of which
is greater than − log(log 2)/b + c for b > 0 or less than
− log(log 2)/b + c for b < 0.
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Basic Idea
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Effective Degrees

Use the “complete” to assess the “partial”

I Original objective function: S(θ) = (y − f(θ))′ (y − f(θ))

I Complete 2nd order expansion of the objective:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′H(θ − θ∗)

where

H =
1

2
∇2S(θ∗) = F′•F• −

[
ε′
]
[F••]

[
ε′
]
[F••] =

(
n∑

i=1

εi
∂2f (xi ;θ)

∂θr∂θs

∣∣∣∣∣
θ=θ∗

)
k×k

I Partial 2nd order expansion of the objective:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′F′•F•(θ − θ∗)

Charles Y. Tan charles tan@merck.com Sigmoid curves and a case for close-to-linear nonlinear models



Introduction
Nonlinear Models

Sigmoid Curves
Assess the Approximation

Numerical Case Study
Conclusions

Basic Idea
Information Content
Effective Degrees

Use the “complete” to assess the “partial”

I Original objective function: S(θ) = (y − f(θ))′ (y − f(θ))

I Complete 2nd order expansion of the objective:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′H(θ − θ∗)

where

H =
1

2
∇2S(θ∗) = F′•F• −

[
ε′
]
[F••]

[
ε′
]
[F••] =

(
n∑

i=1

εi
∂2f (xi ;θ)

∂θr∂θs

∣∣∣∣∣
θ=θ∗

)
k×k

I Partial 2nd order expansion of the objective:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′F′•F•(θ − θ∗)

Charles Y. Tan charles tan@merck.com Sigmoid curves and a case for close-to-linear nonlinear models



Introduction
Nonlinear Models

Sigmoid Curves
Assess the Approximation

Numerical Case Study
Conclusions

Basic Idea
Information Content
Effective Degrees

Use the “complete” to assess the “partial”

I Original objective function: S(θ) = (y − f(θ))′ (y − f(θ))
I Complete 2nd order expansion of the objective:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′H(θ − θ∗)

where

H =
1

2
∇2S(θ∗) = F′•F• −

[
ε′
]
[F••]

[
ε′
]
[F••] =

(
n∑

i=1

εi
∂2f (xi ;θ)

∂θr∂θs

∣∣∣∣∣
θ=θ∗

)
k×k

I Partial 2nd order expansion of the objective:

S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′F′•F•(θ − θ∗)

Charles Y. Tan charles tan@merck.com Sigmoid curves and a case for close-to-linear nonlinear models



Introduction
Nonlinear Models

Sigmoid Curves
Assess the Approximation

Numerical Case Study
Conclusions

Basic Idea
Information Content
Effective Degrees

Quantify close-to-linear-ness by comparing H to F′•F•

H = F′•F• −
[
ε′
]
[F••]

I For linear models: F•• = 0, hence H = F′•F•

I As σ → 0: H → F′•F• almost surely

I As n →∞: H → F′•F• almost surely

I For any σ and n: E(H) = F′•F•
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Basic Idea
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Geometry of S(θ) and eigenvalues of H

I All eigenvalues are positive: S(θ) near θ∗ is elliptic paraboloid
like and has a minimum.

I Some of the eigenvalues are negative: S(θ) near θ∗ is
hyperbolic paraboloid like (non-informative).

I The whole S(θ) is unbounded from below, no LS or ML
solution: at least warned.

I S(θ) has (multiple) elliptic paraboloid like “pockets” away
from the true value θ∗, nominal LS or ML solution can be
found: misleading.
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How close is H to F′•F• overall

I Define relative information content τ as

τ =

{
det(H)/ det(F′•F•), if H is positive definite;

−m, if m eigen values of H ≤ 0

I Define probability of model failure as ξ = Pr{τ < 0}
I Define deviation from unity η as η2 = E

[
(τ − 1)2|τ > 0

]
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How close is F•H−1F′• to idempotency

From S(θ) ≈ ε′ε− 2ε′F•(θ − θ∗) + (θ − θ∗)′H(θ − θ∗), we
obtain more rigorous approximations:

I S(θ∗)− S(θ̂) ≈ ε′F•H−1F′•ε
I compared with ε′F•(F′•F•)

−1F′•ε

I S(θ̂) ≈ ε′(I− F•H−1F′•)ε
I compared with ε′(I− F•(F′•F•)

−1F′•)ε

I Dependence of S(θ∗)− S(θ̂) and S(θ̂) is measured by
‖F•H−1F′•(I− F•H−1F′•)‖ (after normalization)

I compared with independence
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Three effective degrees

Let t1 = tr(F•H−1F′•), t2 = tr
(
(F•H−1F′•)

2
)
,

t3 = tr
(
(F•H−1F′•)

3
)

and t4 = tr
(
(F•H−1F′•)

4
)

I Define effective degree of freedom of the model as

α =
t2
1

t2

I Define effective degree of freedom of the residuals as

β =
(n − t1)

2

n − 2t1 + t2
I Define effective degree of dependence as

γ =

√
t2 − 2t3 + t4

t2(n − 2t1 + t2)
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Four Curves
Common Design
Close-to-linear?

Four particular curves: from a cell based bioassay

Model a b c d g

4P Logistic 2500 −1.7 log(30) 400
Richards 2500 −1.3 log(30) 400 3
4P Gompertz 2500 −1.1 log(30) 400
New Model 2500 −1.1 log(30) 400 0.8
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Competitive alternatives for the same data
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Four Curves
Common Design
Close-to-linear?

Spectral decomposition of F′•F•: four-parameter models

Eigen- Eigenvectors
Model values a b c d

4PL 2.7×106 0 0 1.0 0
4.0×105 0 1.0 0 0

2.0 0.88 0 0 0.48
0.74 0.48 0 0 −0.88

4PG 2.6×106 0 0.14 0.99 0
1.1×106 0 −0.99 0.14 0

1.8 0.36 0 0 0.93
0.74 0.93 0 0 −0.36
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Four Curves
Common Design
Close-to-linear?

Spectral decomposition of F′•F•: five-parameter models

Eigen- Eigenvectors
Model values a b c d g

Richards 2.6×106 0 0 1.0 0 0
7.4×105 0 −1.0 0 0 0
5.4×102 0 0 0 0 1.0

0.80 −0.76 0 0 0.65 0
0.34 0.65 0 0 0.76 0

New 2.6×106 0 0 0.98 0 −0.17
1.0×106 0 1.0 0 0 0
1.4×105 0 0 −0.18 0 −0.98

0.87 −0.76 0 0 0.65 0
0.36 0.65 0 0 0.76 0
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Four Curves
Common Design
Close-to-linear?

Probability of model failure ξ
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Four Curves
Common Design
Close-to-linear?

Deviation from unity η
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At a given σ: model α (x-axis) and residuals β (y -axis)
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c)  4P Gompertz ●
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d)  New model

Charles Y. Tan charles tan@merck.com Sigmoid curves and a case for close-to-linear nonlinear models
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b) Richards model

b)  Richards model
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c)  4P Gompertz
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d)  New model
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New paradigm: close-to-linear nonlinear models

I Nonlinear regressions in general
I Nonlinearity is complex and exceedingly local:

H = F′•F• − [ε′] [F••]
I Close-to-linear model is an unstated prerequisite for most

statistical methods and numerical algorithms. Exception:
bootstrapping.

I Extending model for flexibility should only be done with
sufficient justifications since the cost could be high.

I Sigmoid curves in particular

I Richards model (“5PL”) is NOT close-to-linear and its routine
use is unjustifiable.

I The proposed new model is (more) flexible and close-to-linear.
I 4PL and 4PG are close-to-linear.
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Backup

Four-parameter probit (4PP) curve

I The model:

f (x ; a, b, c , d) = d + (a− d)Φ
(
b(x − c)

)
.

I Linearizing function:

Φ−1

(
u − d

a− d

)
= b(x − c)

I Since f (x ; a, b, c , d) is the same curve as f (x ; d ,−b, c , a), the
condition of a > d or a < d is needed to resolve the
identifiability problem.
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Generalized linear models vs sigmoid curves

I Link function: link mean
to linear predictor

I Logit link
I Probit link
I Log-log link

I IRLS works.

I Profile likelihood is
preferred over Wald’s.

I Linearization function: linearize
standardized response to linear regressor

I Logit curve
I Probit curve
I Gompertz curve

I Close-to-linear

I Some PE curvature when design and
parameterization mismatch.
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Paraboloid: elliptic (left) and hyperbolic (right)
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Distribution of quadratic forms

Let A be a square matrix and ε ∼ N(0, σ2I), then
E(ε′Aε/σ2) = tr(A) and V(ε′Aε/σ2) = 2tr(A2).

I A is idempotent: ε′Aε/σ2 ∼ χ2(r) and r = tr(A) = rank(A)

I A is not idempotent: (s1/s2)(ε
′Aε/σ2) matches the first two

moments of χ2(s2
1/s2), where s1 = tr(A) and s2 = tr(A2).
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Usual matrix norm: Frobenius norm

I For any matrix norm: A = 0 ⇐⇒ ‖A‖ = 0

I Frobenius norm: ‖A‖ =
∑

i

∑
j a2

ij = tr(A2)

I γ is normalized so that 0 ≤ γ ≤ 1

γ =
‖F•H−1F′•(I− F•H−1F′•)‖
‖F•H−1F′•‖‖I− F•H−1F′•‖

=

√
t2 − 2t3 + t4

t2(n − 2t1 + t2)
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Flexibility of the new model: the effect of g

g = 1.5
g = 1
g = 0.75

g = 0.5
g = 0.25
g = 0
g = −0.5
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