Sigmoid curves and a case for close-to-linear nonlinear models

Charles Y. Tan charles_tan@merck.com
Merck Research Laboratories / MSD
West Point, Pennsylvania

Nonclinical Statistics Conference 2008

Outline

Introduction

Nonlinear Models

Sigmoid Curves

Assess the Approximation

Numerical Case Study

Conclusions

Sigmoid curves are common in biological sciences

- Quantitative bioanalytical methods
- Immunoassays
- Bioassays
- Hill equation (1910)
- Pharmacology
- Concentration-effect or dose-response curves
- Emax model (1964)
- Growth curves
- (Population or organ) size as function of time
- Mechanistic and empirical
- Autocatalytic model $(1838,1908)$

Statistics: old favorite and new question

- Classic models: (four-parameter) logistic models
- Hill equation, Emax model, and autocatalytic model are the same models: logistic models.
- They're symmetric.

Statistics: old favorite and new question

- Classic models: (four-parameter) logistic models
- Hill equation, Emax model, and autocatalytic model are the same models: logistic models.
- They're symmetric.
- New question: what model to use when data are asymmetric
- Answer from some quarters: "five-parameter logistic (5PL)" (Richards model)

Statistics: old favorite and new question

- Classic models: (four-parameter) logistic models
- Hill equation, Emax model, and autocatalytic model are the same models: logistic models.
- They're symmetric.
- New question: what model to use when data are asymmetric
- Answer from some quarters: "five-parameter logistic (5PL)" (Richards model)
- Ratkowsky (1983, 1990): "significant intrinsic curvature", "a particularly unfortunate model", "abuse of Occams Razor"
- Seber and Wild (1989): "Bad ill-conditioning and convergence problems"

Nonlinear regression

$$
y_{i}=f\left(x_{i} ; \boldsymbol{\theta}\right)+\varepsilon_{i}, \quad i=1,2, \ldots, n,
$$

- Nonlinearity of f with respect to $\boldsymbol{\theta}$: defining characteristics
- Nonlinearity of f with respect to x : incidental

Nonlinear regression

$$
y_{i}=f\left(x_{i} ; \boldsymbol{\theta}\right)+\varepsilon_{i}, \quad i=1,2, \ldots, n,
$$

- Nonlinearity of f with respect to $\boldsymbol{\theta}$: defining characteristics
- Nonlinearity of f with respect to x : incidental
- Homogeneous variance: ε_{i} 's are i.i.d. $N\left(0, \sigma^{2}\right)$ Maximum Likelihood = Least Squares Objective function:

$$
S(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))^{\prime}(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))
$$

1st order approximation of the model

$$
\mathbf{f}(\boldsymbol{\theta}) \approx \mathbf{f}\left(\boldsymbol{\theta}^{*}\right)+\mathbf{F}_{\bullet}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

where

$$
\mathbf{F}_{\mathbf{\bullet}}=\mathbf{F}_{\bullet}\left(\boldsymbol{\theta}^{*}\right)=\left(\left.\frac{\partial f\left(x_{i} ; \boldsymbol{\theta}\right)}{\partial \theta_{j}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}^{*}}\right)_{n \times k}
$$

Plug it in the definition of $S(\boldsymbol{\theta})$, we have a partial 2nd order expansion of $S(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$:

$$
S(\boldsymbol{\theta}) \approx \varepsilon^{\prime} \varepsilon-2 \varepsilon^{\prime} \mathbf{F}_{\mathbf{\bullet}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}_{\mathbf{\bullet}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

Common framework for inference

$$
\begin{aligned}
& S\left(\boldsymbol{\theta}^{*}\right)-S(\hat{\theta}) \approx\left(\hat{\theta}-\theta^{*}\right)^{\prime} F_{\mathbf{\prime}}^{\prime} \mathrm{F}_{\mathbf{0}}\left(\hat{\theta}-\boldsymbol{\theta}^{*}\right) \approx \varepsilon^{\prime} \mathrm{F}_{\mathbf{0}}\left(\mathrm{F}_{\mathbf{\prime}}^{\prime} \mathrm{F}_{\mathbf{0}}\right)^{-1} \mathrm{~F}_{\mathbf{0}}^{\prime} \varepsilon \\
& S(\hat{\boldsymbol{\theta}}) \approx \varepsilon^{\prime}\left(\mathbf{I}-\mathbf{F}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{0}}\right)^{-1} \mathbf{F}_{\mathbf{0}}^{\prime}\right) \varepsilon
\end{aligned}
$$

Common framework for inference

$$
\begin{aligned}
& S\left(\theta^{*}\right)-S(\hat{\theta}) \approx\left(\hat{\theta}-\theta^{*}\right)^{\prime} F_{\mathbf{\prime}}^{\prime} \mathrm{F}_{\mathbf{0}}\left(\hat{\theta}-\boldsymbol{\theta}^{*}\right) \approx \varepsilon^{\prime} \mathrm{F}_{\mathbf{0}}\left(\mathrm{F}_{\mathbf{\prime}}^{\prime} \mathrm{F}_{\mathbf{0}}\right)^{-1} \mathrm{~F}_{\mathbf{0}}^{\prime} \varepsilon \\
& S(\hat{\boldsymbol{\theta}}) \approx \varepsilon^{\prime}\left(\mathbf{I}-\mathbf{F}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{0}}\right)^{-1} \mathbf{F}_{\mathbf{0}}^{\prime}\right) \varepsilon
\end{aligned}
$$

Since $\mathbf{F}_{\mathbf{\bullet}}\left(\mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}_{\mathbf{\bullet}}\right)^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}$ is idempotent

Common framework for inference

$$
\begin{gathered}
S\left(\boldsymbol{\theta}^{*}\right)-S(\hat{\theta}) \approx\left(\hat{\theta}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathbf{F}_{\mathbf{0}} \mathbf{F}_{\mathbf{0}}\left(\hat{\theta}-\boldsymbol{\theta}^{*}\right) \approx \varepsilon^{\prime} \mathbf{F}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{\prime}}^{\prime} \mathbf{F}_{\mathbf{0}}\right)^{-1} \mathbf{F}_{\mathbf{\prime}}^{\prime} \varepsilon \\
S(\hat{\boldsymbol{\theta}}) \approx \varepsilon^{\prime}\left(\mathbf{I}-\mathbf{F}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{0}}\right)^{-1} \mathbf{F}_{\mathbf{0}}\right) \varepsilon
\end{gathered}
$$

Since $\mathbf{F}_{\mathbf{0}}\left(\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{0}}\right)^{-1} \mathbf{F}_{\mathbf{0}}^{\prime}$ is idempotent
Local inference:

$$
\frac{\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathbf{F}_{\cdot}^{\prime} \boldsymbol{F}_{\cdot}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{*}\right)}{S(\hat{\boldsymbol{\theta}})} \sim \frac{k}{n-k} F_{k, n-k}
$$

Global inference:

$$
\frac{S\left(\boldsymbol{\theta}^{*}\right)-S(\hat{\boldsymbol{\theta}})}{S(\hat{\boldsymbol{\theta}})} \sim \frac{k}{n-k} F_{k, n-k}
$$

Intrinsic and parameter-effect curvatures

Expectation surface or solution locus: $\mathbf{f}(\boldsymbol{\theta}) \in \mathbb{R}^{n}$ Its approximation:

$$
\mathbf{f}(\boldsymbol{\theta}) \approx \mathbf{f}\left(\boldsymbol{\theta}^{*}\right)+\mathbf{F}_{\bullet}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

Intrinsic and parameter-effect curvatures

Expectation surface or solution locus: $\mathbf{f}(\boldsymbol{\theta}) \in \mathbb{R}^{n}$ Its approximation:

$$
\mathbf{f}(\boldsymbol{\theta}) \approx \mathbf{f}\left(\boldsymbol{\theta}^{*}\right)+\mathrm{F}_{\bullet}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

- Planar assumption
- The expectation surface is close to its tangent plane.
- Intrinsic curvature: deviation at $\mathbf{f}(\hat{\boldsymbol{\theta}})$.

Intrinsic and parameter-effect curvatures

Expectation surface or solution locus: $\mathbf{f}(\boldsymbol{\theta}) \in \mathbb{R}^{n}$ Its approximation:

$$
\mathbf{f}(\boldsymbol{\theta}) \approx \mathbf{f}\left(\boldsymbol{\theta}^{*}\right)+\mathrm{F}_{\bullet}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

- Planar assumption
- The expectation surface is close to its tangent plane.
- Intrinsic curvature: deviation at $\mathbf{f}(\hat{\boldsymbol{\theta}})$.
- Uniform-coordinate assumption
- Straight parallel equispaced lines in the parameter space \mathbb{R}^{k} map into straight parallel equispaced lines in the expectation surface (as they do in the tangent plane).
- Parameter-effect curvature: deviation at $\mathbf{f}(\hat{\boldsymbol{\theta}})$.

Curvatures (nonlinearity) are local properties

- The model f
- The parameters $\boldsymbol{\theta}$
- Parameterization
- Values
- The design \mathbf{x}
- Sample size
- Values
- The particular realization of ε

Ratkowsky's concept: close-to-linear

- Asymptotically, i.e., $n \rightarrow \infty$ or $\sigma \rightarrow 0$, all nonlinear models behave like linear models.
- A nonlinear model is close-to-linear if it behaves like a linear model under relative small n and moderate σ.

Shared parameterization to make a fair comparison

Let x denote the independent variable. Let $\boldsymbol{\theta}$ be either (a, b, c, d) for four-parameter models or (a, b, c, d, g) for five-parameter models. Let $u=f(x ; \boldsymbol{\theta})$. We impose following conditions on the independent variable and parameters:
I. The curve is sigmoid when u is plotted against x;
II. When $x=c, u=(a+d) / 2$;
III. When $b>0, d$ is the left asymptote and a is the right asymptote;
IV. When $b<0, a$ is the left asymptote and d is the right asymptote;
V. u is a function of x through $b(x-c)$.

Symmetry and inflection point

- A sigmoid curve is symmetric if and only if $\partial f / \partial x$ is an even function centered at the mid point c.
- Inflection point is where $\partial f / \partial x$ reaches a (local) minimum or maximum.
- A necessary, but not sufficient, condition for symmetry: the inflection point is unique and coincides with the mid point c.

Four-parameter logistic (4PL) curve

- The model:

$$
f(x ; a, b, c, d)=d+\frac{a-d}{1+e^{-b(x-c)}}
$$

Four-parameter logistic (4PL) curve

- The model:

$$
f(x ; a, b, c, d)=d+\frac{a-d}{1+e^{-b(x-c)}}
$$

- Linearizing function:

$$
\operatorname{logit}\left(\frac{u-d}{a-d}\right)=b(x-c)
$$

Four-parameter logistic (4PL) curve

- The model:

$$
f(x ; a, b, c, d)=d+\frac{a-d}{1+e^{-b(x-c)}}
$$

- Linearizing function:

$$
\operatorname{logit}\left(\frac{u-d}{a-d}\right)=b(x-c)
$$

- Since $f(x ; a, b, c, d)$ is the same curve as $f(x ; d,-b, c, a)$, the condition of $a>d$ or $a<d$ is needed to resolve the identifiability problem.

Richards model ("5PL")

- The model:

$$
f(x ; a, b, c, d, g)=d+\frac{a-d}{\left(1+\left(2^{1 / g}-1\right) e^{-b(x-c)}\right)^{g}}
$$

Richards model ("5PL")

- The model:

$$
f(x ; a, b, c, d, g)=d+\frac{a-d}{\left(1+\left(2^{1 / g}-1\right) e^{-b(x-c)}\right)^{g}}
$$

- Linearizing function:

$$
\log \left(\frac{2^{1 / g}-1}{\left(\frac{u-d}{a-d}\right)^{-1 / g}-1}\right)=b(x-c)
$$

Richards model ("5PL")

- The model:

$$
f(x ; a, b, c, d, g)=d+\frac{a-d}{\left(1+\left(2^{1 / g}-1\right) e^{-b(x-c)}\right)^{g}}
$$

- Linearizing function:

$$
\log \left(\frac{2^{1 / g}-1}{\left(\frac{u-d}{a-d}\right)^{-1 / g}-1}\right)=b(x-c)
$$

- For $g=1$, Richards model is reduced to 4PL.
- For $g \neq 1$, Richards model is asymmetric.

Richards model: flexibility and "identification problem"

- Four distinctive segments of the parameter space

R1. $b>0$ and $a>d$: increasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $+\infty \rightarrow \log (\log 2) / b+c<c$;
R2. $b>0$ and $a<d$: decreasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $+\infty \rightarrow \log (\log 2) / b+c<c$;
R3. $b<0$ and $a>d$: decreasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $-\infty \rightarrow \log (\log 2) / b+c>c$;
R4. $b<0$ and $a<d$: increasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $-\infty \rightarrow \log (\log 2) / b+c>c$.

Richards model: flexibility and "identification problem"

- Four distinctive segments of the parameter space

R1. $b>0$ and $a>d$: increasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $+\infty \rightarrow \log (\log 2) / b+c<c$;
R2. $b>0$ and $a<d$: decreasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $+\infty \rightarrow \log (\log 2) / b+c<c$;
R3. $b<0$ and $a>d$: decreasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $-\infty \rightarrow \log (\log 2) / b+c>c$;
R4. $b<0$ and $a<d$: increasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $-\infty \rightarrow \log (\log 2) / b+c>c$.

- Flexibility: each pair, R1/R4 and R2/R3, is capable to model an inflection point anywhere in \mathbb{R}

Richards model: flexibility and "identification problem"

- Four distinctive segments of the parameter space

R1. $b>0$ and $a>d$: increasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $+\infty \rightarrow \log (\log 2) / b+c<c$;
R2. $b>0$ and $a<d$: decreasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $+\infty \rightarrow \log (\log 2) / b+c<c$;
R3. $b<0$ and $a>d$: decreasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $-\infty \rightarrow \log (\log 2) / b+c>c$;
R4. $b<0$ and $a<d$: increasing function of x; as $g: 0 \rightarrow+\infty$, the inflection point: $-\infty \rightarrow \log (\log 2) / b+c>c$.

- Flexibility: each pair, R1/R4 and R2/R3, is capable to model an inflection point anywhere in \mathbb{R}
- "Identification problem": pairs of curves that are not identical, but very similar (same asymptotes, same mid point, same inflection point), yet far apart in the parameter space.

Four-parameter Gompertz (4PG) curve

- The model:

$$
f(x ; a, b, c, d)=d+\frac{a-d}{2^{\exp (-b(x-c))}}
$$

Four-parameter Gompertz (4PG) curve

- The model:

$$
f(x ; a, b, c, d)=d+\frac{a-d}{2^{\exp (-b(x-c))}}
$$

- Linearizing function:

$$
-\log \left(-\log _{2}\left(\frac{u-d}{a-d}\right)\right)=b(x-c)
$$

Four-parameter Gompertz (4PG) curve

- The model:

$$
f(x ; a, b, c, d)=d+\frac{a-d}{2^{\exp (-b(x-c))}}
$$

- Linearizing function:

$$
-\log \left(-\log _{2}\left(\frac{u-d}{a-d}\right)\right)=b(x-c)
$$

- Asymmetric sigmoid curve

4PG: distinctive but not quite flexible

- Four distinctive segments of the parameter space

G1. $b>0$ and $a>d$: increasing function of x; the inflection point is at $\log (\log 2) / b+c<c$;
G2. $b>0$ and $a<d$: decreasing function of x; the inflection point is at $\log (\log 2) / b+c<c$;
G3. $b<0$ and $a>d$: decreasing function of x; the inflection point is at $\log (\log 2) / b+c>c$;
G4. $b<0$ and $a<d$: increasing function of x; the inflection point is at $\log (\log 2) / b+c>c$.

4PG: distinctive but not quite flexible

- Four distinctive segments of the parameter space

G1. $b>0$ and $a>d$: increasing function of x; the inflection point is at $\log (\log 2) / b+c<c$;
G2. $b>0$ and $a<d$: decreasing function of x; the inflection point is at $\log (\log 2) / b+c<c$;
G3. $b<0$ and $a>d$: decreasing function of x; the inflection point is at $\log (\log 2) / b+c>c$;
G4. $b<0$ and $a<d$: increasing function of x; the inflection point is at $\log (\log 2) / b+c>c$.

- G1-G4 can be thought as the limiting version of R1-R4 as $g \rightarrow+\infty$.

4PG: distinctive but not quite flexible

- Four distinctive segments of the parameter space

G1. $b>0$ and $a>d$: increasing function of x; the inflection point is at $\log (\log 2) / b+c<c$;
G2. $b>0$ and $a<d$: decreasing function of x; the inflection point is at $\log (\log 2) / b+c<c$;
G3. $b<0$ and $a>d$: decreasing function of x; the inflection point is at $\log (\log 2) / b+c>c$;
G4. $b<0$ and $a<d$: increasing function of x; the inflection point is at $\log (\log 2) / b+c>c$.

- G1-G4 can be thought as the limiting version of R1-R4 as $g \rightarrow+\infty$.
- $f(x ; a, b, c, d)$ and $f(x ; d,-b, c, a)$ have the same asymptotes, the same mid point, and their inflection points are equal distance from mid point.

The new model: mixing two 4PG curves up linearly

- The model:

$$
f(x)=g\left(d+\frac{a-d}{2^{\exp (-b(x-c))}}\right)+(1-g)\left(a+\frac{d-a}{2^{\exp (b(x-c))}}\right)
$$

The new model: mixing two 4PG curves up linearly

- The model:

$$
f(x)=g\left(d+\frac{a-d}{2^{\exp (-b(x-c))}}\right)+(1-g)\left(a+\frac{d-a}{2^{\exp (b(x-c))}}\right)
$$

- Linearizing function:

$$
\psi^{-1}\left(\frac{u-g d-(1-g) a}{a-d} ; g\right)=b(x-c)
$$

where $\Psi(t ; g)=\frac{g}{2 \exp (-t)}-\frac{1-g}{2 \exp (t)}$.

The new model: mixing two 4PG curves up linearly

- The model:

$$
f(x)=g\left(d+\frac{a-d}{2^{\exp (-b(x-c))}}\right)+(1-g)\left(a+\frac{d-a}{2^{\exp (b(x-c))}}\right)
$$

- Linearizing function:

$$
\Psi^{-1}\left(\frac{u-g d-(1-g) a}{a-d} ; g\right)=b(x-c)
$$

where $\Psi(t ; g)=\frac{g}{2 \exp (-t)}-\frac{1-g}{2 \exp (t)}$.

- $f(x ; a, b, c, d, g)=f(x ; d,-b, c, a, 1-g)$: either $a>d$ or $a<d$ would resolve the identifiability issue without any loss.

The new model: flexible and distinctive

Theorem

- When $g=1 / 2$, it is a symmetric;
- When $1 / 2<g \leq 1$, the inflection point is unique and between $\log (\log 2) / b+c$ and c;
- When $0 \leq g<1 / 2$, the inflection point is unique and between c and $-\log (\log 2) / b+c$;
- When $g>1$, there are multiple inflection points, one of which is less than $\log (\log 2) / b+c$ for $b>0$ or greater than $\log (\log 2) / b+c$ for $b<0$;
- When $g<0$, there are multiple inflection points, one of which is greater than $-\log (\log 2) / b+c$ for $b>0$ or less than $-\log (\log 2) / b+c$ for $b<0$.

Use the "complete" to assess the "partial"

- Original objective function: $S(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))^{\prime}(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))$

Use the "complete" to assess the "partial"

- Original objective function: $S(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))^{\prime}(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))$
- Partial 2nd order expansion of the objective:

$$
S(\boldsymbol{\theta}) \approx \varepsilon^{\prime} \varepsilon-2 \varepsilon^{\prime} \mathbf{F}_{\boldsymbol{\bullet}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}_{\boldsymbol{\bullet}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

Use the "complete" to assess the "partial"

- Original objective function: $S(\boldsymbol{\theta})=(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))^{\prime}(\mathbf{y}-\mathbf{f}(\boldsymbol{\theta}))$
- Complete 2nd order expansion of the objective:

$$
S(\boldsymbol{\theta}) \approx \varepsilon^{\prime} \varepsilon-2 \varepsilon^{\prime} \mathrm{F}_{\mathbf{\bullet}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathrm{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

where

$$
\begin{gathered}
\mathbf{H}=\frac{1}{2} \nabla^{2} S\left(\boldsymbol{\theta}^{*}\right)=\mathbf{F}_{\bullet}^{\prime} \mathbf{F}_{\bullet}-\left[\boldsymbol{\varepsilon}^{\prime}\right]\left[\mathbf{F}_{\bullet \bullet}\right] \\
{\left[\boldsymbol{\varepsilon}^{\prime}\right]\left[\mathbf{F}_{\bullet \bullet}\right]=\left(\left.\sum_{i=1}^{n} \varepsilon_{i} \frac{\partial^{2} f\left(x_{i} ; \boldsymbol{\theta}\right)}{\partial \theta_{r} \partial \theta_{s}}\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}^{*}}\right)_{k \times k}}
\end{gathered}
$$

- Partial 2nd order expansion of the objective:

$$
S(\boldsymbol{\theta}) \approx \varepsilon^{\prime} \varepsilon-2 \varepsilon^{\prime} \mathbf{F}_{\mathbf{\bullet}}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathrm{F}_{\bullet}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)
$$

Quantify close-to-linear-ness by comparing \mathbf{H} to $\mathbf{F}^{\prime} . \mathbf{F}^{\prime}$

$$
\mathbf{H}=\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{\bullet}}-\left[\varepsilon^{\prime}\right]\left[\mathbf{F}_{\bullet \bullet}\right]
$$

- For linear models: $\mathbf{F}_{\mathbf{\bullet}}=\mathbf{0}$, hence $\mathbf{H}=\mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}_{\boldsymbol{\bullet}}$

Quantify close-to-linear-ness by comparing \mathbf{H} to $\mathbf{F}^{\prime} \mathbf{F}$.

$$
\mathbf{H}=\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{\bullet}}-\left[\varepsilon^{\prime}\right]\left[\mathbf{F}_{\mathbf{0}}\right]
$$

- For linear models: $\mathbf{F}_{\mathbf{\bullet}}=\mathbf{0}$, hence $\mathbf{H}=\mathbf{F}_{\mathbf{~}}^{\prime} \mathbf{F}_{\boldsymbol{\bullet}}$
- As $\sigma \rightarrow 0: \mathbf{H} \rightarrow \mathbf{F}^{\prime} \mathbf{F}_{\bullet}$ almost surely
- As $n \rightarrow \infty$: $\mathbf{H} \rightarrow \mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}$. almost surely

Quantify close-to-linear-ness by comparing \mathbf{H} to $\mathbf{F}^{\prime} \mathbf{F}$.

$$
\mathbf{H}=\mathbf{F}_{\mathbf{0}}^{\prime} \mathbf{F}_{\mathbf{\bullet}}-\left[\varepsilon^{\prime}\right]\left[\mathbf{F}_{\bullet \bullet}\right]
$$

- For linear models: $\mathbf{F}_{\mathbf{\bullet}}=\mathbf{0}$, hence $\mathbf{H}=\mathbf{F}_{\mathbf{~}}^{\prime} \mathbf{F}_{\boldsymbol{\bullet}}$
- As $\sigma \rightarrow 0: \mathbf{H} \rightarrow \mathbf{F}^{\prime} \mathbf{F}_{\bullet}$ almost surely
- As $n \rightarrow \infty: \mathbf{H} \rightarrow \mathbf{F}_{\mathbf{\prime}}^{\prime} \mathbf{F}$. almost surely
- For any σ and $n: \mathcal{E}(\mathbf{H})=\mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}_{\text {. }}$

Geometry of $\boldsymbol{S}(\boldsymbol{\theta})$ and eigenvalues of \mathbf{H}

- All eigenvalues are positive: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is elliptic paraboloid like and has a minimum.

Geometry of $\boldsymbol{S}(\boldsymbol{\theta})$ and eigenvalues of \mathbf{H}

- All eigenvalues are positive: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is elliptic paraboloid like and has a minimum.
- Some of the eigenvalues are negative: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is hyperbolic paraboloid like (non-informative).

Geometry of $\boldsymbol{S}(\boldsymbol{\theta})$ and eigenvalues of \mathbf{H}

- All eigenvalues are positive: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is elliptic paraboloid like and has a minimum.
- Some of the eigenvalues are negative: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is hyperbolic paraboloid like (non-informative).
- The whole $S(\theta)$ is unbounded from below, no LS or ML solution: at least warned.

Geometry of $\boldsymbol{S}(\boldsymbol{\theta})$ and eigenvalues of \mathbf{H}

- All eigenvalues are positive: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is elliptic paraboloid like and has a minimum.
- Some of the eigenvalues are negative: $\boldsymbol{S}(\boldsymbol{\theta})$ near $\boldsymbol{\theta}^{*}$ is hyperbolic paraboloid like (non-informative).
- The whole $S(\boldsymbol{\theta})$ is unbounded from below, no LS or ML solution: at least warned.
- $S(\boldsymbol{\theta})$ has (multiple) elliptic paraboloid like "pockets" away from the true value $\boldsymbol{\theta}^{*}$, nominal LS or ML solution can be found: misleading.

How close is H to \mathbf{F}^{\prime}. . overall

- Define relative information content τ as

$$
\tau= \begin{cases}\operatorname{det}(\mathbf{H}) / \operatorname{det}\left(\mathbf{F}_{\bullet}^{\prime} \mathbf{F}_{\bullet}\right), & \text { if } \mathbf{H} \text { is positive definite; } \\ -m, & \text { if } m \text { eigen values of } \mathbf{H} \leq 0\end{cases}
$$

How close is H to \mathbf{F}^{\prime}. \mathbf{F}. overall

- Define relative information content τ as

$$
\tau= \begin{cases}\operatorname{det}(\mathbf{H}) / \operatorname{det}\left(\mathbf{F}_{\bullet}^{\prime} \mathbf{F}_{\bullet}\right), & \text { if } \mathbf{H} \text { is positive definite; } \\ -m, & \text { if } m \text { eigen values of } \mathbf{H} \leq 0\end{cases}
$$

- Define probability of model failure as $\xi=\operatorname{Pr}\{\tau<0\}$

How close is H to \mathbf{F}^{\prime}. \mathbf{F}. overall

- Define relative information content τ as

$$
\tau= \begin{cases}\operatorname{det}(\mathbf{H}) / \operatorname{det}\left(\mathbf{F}_{\bullet}^{\prime} \mathbf{F}_{\bullet}\right), & \text { if } \mathbf{H} \text { is positive definite; } \\ -m, & \text { if } m \text { eigen values of } \mathbf{H} \leq 0\end{cases}
$$

- Define probability of model failure as $\xi=\operatorname{Pr}\{\tau<0\}$
- Define deviation from unity η as $\eta^{2}=E\left[(\tau-1)^{2} \mid \tau>0\right]$

How close is $\mathbf{F} . \mathbf{H}^{-1} \mathbf{F}^{\prime}$, to idempotency

From $S(\boldsymbol{\theta}) \approx \varepsilon^{\prime} \varepsilon-2 \varepsilon^{\prime} \mathbf{F} .\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)+\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)^{\prime} \mathbf{H}\left(\boldsymbol{\theta}-\boldsymbol{\theta}^{*}\right)$, we obtain more rigorous approximations:

- $S\left(\boldsymbol{\theta}^{*}\right)-S(\hat{\boldsymbol{\theta}}) \approx \varepsilon^{\prime} \mathbf{F}_{\mathbf{~}} \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\circ}}^{\prime} \varepsilon$
- compared with $\varepsilon^{\prime} F_{\bullet}\left(F^{\prime} \mathbf{F}_{\bullet}\right)^{-1} \mathbf{F}^{\prime} \varepsilon$
- $S(\hat{\boldsymbol{\theta}}) \approx \varepsilon^{\prime}\left(\mathbf{I}-\mathbf{F}_{\bullet} \mathbf{H}^{-1} \mathbf{F}_{\bullet}^{\prime}\right) \varepsilon$
- compared with $\varepsilon^{\prime}\left(\mathbf{I}-\mathbf{F}_{\bullet}\left(\mathbf{F}_{\bullet}^{\prime} \mathbf{F}_{\bullet}\right)^{-1} \mathbf{F}_{\bullet}^{\prime}\right) \varepsilon$
- Dependence of $S\left(\boldsymbol{\theta}^{*}\right)-S(\hat{\boldsymbol{\theta}})$ and $S(\hat{\boldsymbol{\theta}})$ is measured by $\left\|\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-1} \mathbf{F}_{\bullet}^{\prime}\left(\mathbf{I}-\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-1} \mathbf{F}_{\bullet}^{\prime}\right)\right\|$ (after normalization)
- compared with independence

Three effective degrees

Let $t_{1}=\operatorname{tr}\left(\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-\mathbf{1}} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right), t_{2}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{0}} \mathbf{H}^{\mathbf{1}} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right)^{2}\right)$, $t_{3}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-\mathbf{1}} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right)^{3}\right)$ and $t_{4}=\operatorname{tr}\left(\left(\mathbf{F} \mathbf{\bullet} \mathbf{H}^{-\mathbf{1}} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right)^{4}\right)$

- Define effective degree of freedom of the model as

$$
\alpha=\frac{t_{1}^{2}}{t_{2}}
$$

Three effective degrees

Let $t_{1}=\operatorname{tr}\left(\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-\mathbf{1}} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right), t_{2}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{0}} \mathbf{H}^{-\mathbf{1}} \mathbf{F}_{\boldsymbol{\bullet}}^{\prime}\right)^{2}\right)$, $t_{3}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-\mathbf{1}} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right)^{3}\right)$ and $t_{4}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right)^{4}\right)$

- Define effective degree of freedom of the model as

$$
\alpha=\frac{t_{1}^{2}}{t_{2}}
$$

- Define effective degree of freedom of the residuals as

$$
\beta=\frac{\left(n-t_{1}\right)^{2}}{n-2 t_{1}+t_{2}}
$$

Three effective degrees

$$
\begin{aligned}
& \text { Let } t_{1}=\operatorname{tr}\left(\mathbf{F}_{\mathbf{0}} \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right), t_{2}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{0}} \mathbf{H}^{-1} \mathbf{F}_{\bullet}^{\prime}\right)^{2}\right), \\
& t_{3}=\operatorname{tr}\left(\left(\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-1} \mathbf{F}_{\bullet}^{\prime}\right)^{3}\right) \text { and } t_{4}=\operatorname{tr}\left(\left(\mathbf{\mathbf { F } _ { \mathbf { 0 } } \mathbf { H } ^ { - 1 } \mathbf { F } _ { \bullet } ^ { \prime }) ^ { 4 })}\right.\right.
\end{aligned}
$$

- Define effective degree of freedom of the model as

$$
\alpha=\frac{t_{1}^{2}}{t_{2}}
$$

- Define effective degree of freedom of the residuals as

$$
\beta=\frac{\left(n-t_{1}\right)^{2}}{n-2 t_{1}+t_{2}}
$$

- Define effective degree of dependence as

$$
\gamma=\sqrt{\frac{t_{2}-2 t_{3}+t_{4}}{t_{2}\left(n-2 t_{1}+t_{2}\right)}}
$$

Four particular curves: from a cell based bioassay

Model	a	b	c	d	g
4P Logistic	2500	-1.7	$\log (30)$	400	
Richards	2500	-1.3	$\log (30)$	400	3
4P Gompertz	2500	-1.1	$\log (30)$	400	
New Model	2500	-1.1	$\log (30)$	400	0.8

Competitive alternatives for the same data

Spectral decomposition of ${ }^{\prime}{ }^{\prime}$ F.: four-parameter models

	Eigen-	Eigenvectors			
Model	values	a	b	c	d
4 PL	2.7×10^{6}	0	0	1.0	0
	4.0×10^{5}	0	1.0	0	0
	2.0	0.88	0	0	0.48
	0.74	0.48	0	0	-0.88
4 PG	2.6×10^{6}	0	0.14	0.99	0
	1.1×10^{6}	0	-0.99	0.14	0
	1.8	0.36	0	0	0.93
	0.74	0.93	0	0	-0.36

Spectral decomposition of \mathbf{F}^{\prime}.F.: five-parameter models

	Eigen-	Eigenvectors				
Model	values	a	b	c	d	g
Richards	2.6×10^{6}	0	0	1.0	0	0
	7.4×10^{5}	0	-1.0	0	0	0
	5.4×10^{2}	0	0	0	0	1.0
	0.80	-0.76	0	0	0.65	0
	0.34	0.65	0	0	0.76	0
New	2.6×10^{6}	0	0	0.98	0	-0.17
	1.0×10^{6}	0	1.0	0	0	0
	1.4×10^{5}	0	0	-0.18	0	-0.98
	0.87	-0.76	0	0	0.65	0
	0.36	0.65	0	0	0.76	0

Probability of model failure ξ

Deviation from unity η

Introduction

At a given σ : model α (x-axis) and residuals β (y-axis)

Introduction

Closeup of effective degrees: α and β when $\gamma<0.1$

New paradigm: close-to-linear nonlinear models

- Nonlinear regressions in general
- Nonlinearity is complex and exceedingly local:

$$
\mathbf{H}=\mathbf{F}_{\bullet}^{\prime} \mathbf{F}_{\bullet}-\left[\varepsilon^{\prime}\right]\left[\mathbf{F}_{\bullet \bullet}\right]
$$

- Close-to-linear model is an unstated prerequisite for most statistical methods and numerical algorithms. Exception: bootstrapping.
- Extending model for flexibility should only be done with sufficient justifications since the cost could be high.

New paradigm: close-to-linear nonlinear models

- Nonlinear regressions in general
- Nonlinearity is complex and exceedingly local:

$$
\mathbf{H}=\mathbf{F}_{\mathbf{\bullet}}^{\prime} \mathbf{F}_{\bullet}-\left[\varepsilon^{\prime}\right]\left[\mathbf{F}_{\bullet .}\right]
$$

- Close-to-linear model is an unstated prerequisite for most statistical methods and numerical algorithms. Exception: bootstrapping.
- Extending model for flexibility should only be done with sufficient justifications since the cost could be high.
- Sigmoid curves in particular
- Richards model ("5PL") is NOT close-to-linear and its routine use is unjustifiable.
- The proposed new model is (more) flexible and close-to-linear.
- 4PL and 4PG are close-to-linear.

Four-parameter probit (4PP) curve

- The model:

$$
f(x ; a, b, c, d)=d+(a-d) \Phi(b(x-c)) .
$$

- Linearizing function:

$$
\Phi^{-1}\left(\frac{u-d}{a-d}\right)=b(x-c)
$$

- Since $f(x ; a, b, c, d)$ is the same curve as $f(x ; d,-b, c, a)$, the condition of $a>d$ or $a<d$ is needed to resolve the identifiability problem.

Generalized linear models vs sigmoid curves

- Link function: link mean to linear predictor
- Logit link
- Probit link
- Log-log link
- IRLS works.
- Profile likelihood is preferred over Wald's.
- Linearization function: linearize standardized response to linear regressor
- Logit curve
- Probit curve
- Gompertz curve
- Close-to-linear
- Some PE curvature when design and parameterization mismatch.

Paraboloid: elliptic (left) and hyperbolic (right)

Distribution of quadratic forms

Let \mathbf{A} be a square matrix and $\varepsilon \sim N\left(0, \sigma^{2} \mathbf{I}\right)$, then $\mathcal{E}\left(\varepsilon^{\prime} \mathbf{A} \varepsilon / \sigma^{2}\right)=\operatorname{tr}(\mathbf{A})$ and $\mathcal{V}\left(\varepsilon^{\prime} \mathbf{A} \varepsilon / \sigma^{2}\right)=2 \operatorname{tr}\left(\mathbf{A}^{2}\right)$.

- \mathbf{A} is idempotent: $\varepsilon^{\prime} \mathbf{A} \varepsilon / \sigma^{2} \sim \chi^{2}(r)$ and $r=\operatorname{tr}(\mathbf{A})=\operatorname{rank}(\mathbf{A})$
- \mathbf{A} is not idempotent: $\left(s_{1} / s_{2}\right)\left(\varepsilon^{\prime} \mathbf{A} \varepsilon / \sigma^{2}\right)$ matches the first two moments of $\chi^{2}\left(s_{1}^{2} / s_{2}\right)$, where $s_{1}=\operatorname{tr}(\mathbf{A})$ and $s_{2}=\operatorname{tr}\left(\mathbf{A}^{2}\right)$.

Usual matrix norm: Frobenius norm

- For any matrix norm: $\mathbf{A}=\mathbf{0} \Longleftrightarrow\|\mathbf{A}\|=0$
- Frobenius norm: $\|\mathbf{A}\|=\sum_{i} \sum_{j} a_{i j}^{2}=\operatorname{tr}\left(\mathbf{A}^{2}\right)$
- γ is normalized so that $0 \leq \gamma \leq 1$

$$
\gamma=\frac{\left\|\mathbf{F}_{\mathbf{0}} \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\left(\mathbf{I}-\mathbf{F}_{\mathbf{\bullet}} \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right)\right\|}{\left\|\mathbf{F} \cdot \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right\|\left\|\mathbf{I}-\mathbf{F}_{\mathbf{0}} \mathbf{H}^{-1} \mathbf{F}_{\mathbf{\bullet}}^{\prime}\right\|}=\sqrt{\frac{t_{2}-2 t_{3}+t_{4}}{t_{2}\left(n-2 t_{1}+t_{2}\right)}}
$$

Flexibility of the new model: the effect of g
--. $g=1.5$
-- $g=1$
-- $g=0.75$

$\begin{array}{ll} & g=0.5 \\ -\quad & g=0.25 \\ -\quad & g=0 \\ -\quad & =-0.5\end{array}$

