An Introduction to Non-linear Mixed-effects Models

Marie Davidian
Department of Statistics
North Carolina State University

http://www.stat.ncsu.edu/~davidian

23 September 2008

Outline

1. Introduction
2. Applications
3. Model formulation
4. Model interpretation and inferential objectives

Break
5. Inferential approaches
6. Implementation and examples
7. Extensions
8. Discussion

Some references

Material in this workshop is drawn from:
Davidian, M. and Giltinan, D.M. (1995). Nonlinear Models for Repeated Measurement Data. Chapman \& Hall/CRC Press.

Davidian, M. and Giltinan, D.M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural, Biological, and Environmental Statistics 8, 387-419.

Davidian, M. (2009). Non-linear mixed-effects models. In Longitudinal Data Analysis, G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs (eds). Chapman \& Hall/CRC Press, ch. 5, 107-141.

Shameless promotion:

Introduction

Common situation in the biosciences:

- A continuous response evolves over time (or other condition) within individuals from a population of interest
- Scientific interest focuses on features or mechanisms that underlie individual time trajectories of the response and how these vary across the population
- A theoretical or empirical model for such individual profiles, typically non-linear in parameters that may be interpreted as representing such features or mechanisms, is available
- Repeated measurements over time are available on each individual in a sample drawn from the population
- Inference on the scientific questions of interest is to be made in the context of the model and its parameters

Introduction

Non-linear mixed-effects model:

- Also known as the hierarchical non-linear model
- A formal statistical framework for this situation
- Much statistical methodological research in the early 1990s
- Now widely accepted and used, with applications routinely reported and commercial and free software available
- Extensions and methodological innovations are still ongoing

Objectives of this workshop:

- Provide an introduction to the formulation, utility, and implementation of non-linear mixed models
- Focus on applications in pharmaceutical and health sciences research

Applications

Pharmacokinetics (PK): "What the body does to the drug"

- One of the most important application areas
- The area that inspired much of the methodological development for non-linear mixed-effects models
- Broad goal: Understand and characterize intra-subject processes of drug absorption, distribution, metabolism and excretion (elimination) governing achieved drug concentrations
- and how these processes vary across subjects
- Critical for developing dosing strategies

An outstanding overview: "Pharmacokinetics and pharmacodynamics," by D.M. Giltinan, in Encyclopedia of Biostatistics, 2nd edition

Applications

PK studies in humans: Two types

- "Intensive studies"
- Small number of subjects (often healthy volunteers)
- Frequent samples over time, often following single dose
- Usually early in drug development
- Useful for gaining initial information on "typical" PK behavior in humans and for identifying an appropriate PK model. . .
- Preclinical PK studies in animals are generally intensive studies

Applications

PK studies in humans: Two types

- "Population studies"
- Large number of subjects (heterogeneous patients)
- Often in later stages of drug development or after a drug is in routine use
- Haphazard samples over time, multiple dosing intervals
- Extensive demographical and physiological characteristics
- Useful for understanding associations between patient characteristics and PK behavior \Longrightarrow tailored dosing recommendations

Applications

Theophylline study: 12 subjects, same oral dose ($\mathrm{mg} / \mathrm{kg}$)

Applications

Features:

- Intensive study
- Similarly shaped concentration-time profiles across subjects
- ... but peak, rise, decay vary
- Attributable to inter-subject variation in underlying PK behavior (absorption, distribution, elimination)

Standard: Represent the body by a simple system of compartments

- Gross simplification but extraordinarily useful...

Applications

One-compartment model with first-order absorption, elimination:

$$
\begin{aligned}
\frac{d A(t)}{d t} & =k_{a} A_{a}(t)-k_{e} A(t), & & A(0)=0 \\
\frac{d A_{a}(t)}{d t} & =-k_{a} A_{a}(t), & & A_{a}(0)=F A(0)
\end{aligned}
$$

$F=$ bioavailability, $A_{a}(t)=$ amount at absorption site
Concentration at $t: \quad m(t)=\frac{A(t)}{V}=\frac{k_{a} D F}{V\left(k_{a}-k_{e}\right)}\left\{\exp \left(-k_{e} t\right)-\exp \left(-k_{a} t\right)\right\}$,

$$
k_{e}=C l / V, \quad V=\text { "volume" of compartment, } C l=\text { clearance }
$$

Applications

One-compartment model for theophylline:

- Single "blood compartment" with fractional rates of absorption k_{a} and elimination k_{e}
- Deterministic mathematical model
- Individual PK behavior characterized by PK parameters $\widehat{\boldsymbol{\theta}}=\left(k_{a}, V, C l\right)^{\prime}$

By-product:

- The PK model assumes PK processes are dose-independent
- \Longrightarrow Knowledge of the values of $\widehat{\boldsymbol{\theta}}=\left(k_{a}, V, C l\right)^{\prime}$ allows simulation of concentrations achieved at any time t under different doses
- Can be used to develop dosing regimens

Applications

Objectives of analysis:

- Estimate "typical" values of $\boldsymbol{\theta}=\left(k_{a}, V, C l\right)^{\prime}$ and how they vary in the population of subjects based on the longitudinal concentration data from the sample of 12 subjects
- \Longrightarrow Must incorporate the (theoretical) PK model in an appropriate statistical model (somehow. . .)

Applications

Argatroban study: Another intensive study

- Administered by intravenous infusion for 4 hours (240 min)
- $N=37$ subjects assigned to different constant infusion rates
- One-compartment model with constant intravenous infusion rate $D(\mu \mathrm{~g} / \mathrm{kg} / \mathrm{min})$ for duration $t_{\text {inf }}=240 \mathrm{~min}$

$$
\begin{gathered}
m(t)=\frac{D}{C l}\left[\exp \left\{-\frac{C l}{V}\left(t-t_{\text {inf }}\right)_{+}\right\}-\exp \left(-\frac{C l}{V} t\right)\right], \quad \boldsymbol{\theta}=(C l, V)^{\prime} \\
x_{+}=0 \text { if } x \leq 0 \text { and } x_{+}=x \text { if } x>0
\end{gathered}
$$

Objectives of analysis:

- Estimate "typical" values of $\boldsymbol{\theta}=(C l, V)^{\prime}$ and how they vary in the population of subjects
- Understand relationship between achieved concentrations and a clinical or other response (pharmacodynamics; more later...)

Applications

Profiles for 4 subjects receiving $4.5 \mu \mathrm{~g} / \mathrm{kg}-\mathrm{min}$:

Applications

Quinidine population study: $N=136$ patients undergoing treatment with oral quinidine for atrial fibrillation or arrhythmia

- Demographical/physiological characteristics: Age, weight, height, ethnicity/race, smoking status, ethanol abuse, congestive heart failure, creatinine clearance, α_{1}-acid glycoprotein concentration, ...
- Samples taken over multiple dosing intervals \Longrightarrow (dose time, amount $)=\left(s_{\ell}, D_{\ell}\right)$ for the ℓ th dose interval
- Standard assumption: "Principle of superposition" \Longrightarrow multiple doses are "additive"
- One compartment model gives expression for concentration at time $t . .$.

Applications

For a subject not yet at a steady state:

$$
\begin{aligned}
& A_{a}\left(s_{\ell}\right)= A_{a}\left(s_{\ell-1}\right) \exp \left\{-k_{a}\left(s_{\ell}-s_{\ell-1}\right)\right\}+D_{\ell} \\
& m\left(s_{\ell}\right)= m\left(s_{\ell-1}\right) \exp \left\{-k_{e}\left(s_{\ell}-s_{\ell-1}\right)\right\}+A_{a}\left(s_{\ell-1}\right) \frac{k_{a}}{V\left(k_{a}-k_{e}\right)} \\
& \times\left[\exp \left\{-k_{e}\left(s_{\ell}-s_{\ell-1}\right)\right\}-\exp \left\{-k_{a}\left(s_{\ell}-s_{\ell-1}\right)\right\}\right] \\
& m(t)= m\left(s_{\ell}\right) \exp \left\{-k_{e}\left(t-s_{\ell}\right)\right\}+A_{a}\left(s_{\ell}\right) \frac{k_{a}}{V\left(k_{a}-k_{e}\right)} \\
& \times\left[\exp \left\{-k_{e}\left(t-s_{\ell}\right)\right\}-\exp \left\{-k_{a}\left(t-s_{\ell}\right)\right\}\right], \quad s_{\ell}<t<s_{\ell+1} \\
& k_{e}=C l / V, \quad \boldsymbol{\theta}=\left(k_{a}, V, C l\right)^{\prime}
\end{aligned}
$$

Objective of analysis: Characterize typical values of and variation in $\boldsymbol{\theta}=\left(k_{a}, V, C l\right)^{\prime}$ across the population and elucidate systematic associations between $\boldsymbol{\theta}$ and patient characteristics

Applications

Data for a representative subject:

time $($ hours $)$	conc. $(\mathrm{mg} / \mathrm{L})$	dose (mg)	age $($ years $)$	weight (kg)	creat. $(\mathrm{ml} / \mathrm{min})$	glyco. $(\mathrm{mg} / \mathrm{dl})$
0.00	-	166	75	108	>50	69
6.00	-	166	75	108	>50	69
11.00	-	166	75	108	>50	69
17.00	-	166	75	108	>50	69
23.00	-	166	75	108	>50	69
27.67	0.7	-	75	108	>50	69
29.00	-	166	75	108	>50	94
35.00	-	166	75	108	>50	94
41.00	-	166	75	108	>50	94
47.00	-	166	75	108	>50	94
53.00	-	166	75	108	>50	94
65.00	-	166	75	108	>50	94
71.00	-	166	75	108	>50	94
77.00	0.4	-	75	108	>50	94
161.00	-	166	75	108	>50	88
168.75	0.6	-	75	108	>50	88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF

Applications

Toxicokinetics: Physiologically-based pharmacokinetic (PBPK) models

- PK of environmental, chemical agents; studies often in animals
- N animals exposed, repeated concentrations over time on each
- More "realistic" representation of the body (e.g., organ, tissue compartments)
- System of differential equations cannot be solved analytically
- Lots of PK parameters, some measurable, some unknown: Compartment volumes V, partition coefficients P, flow rates F, metabolic parameters $V_{\text {max }}, K_{m}$, etc

Objectives of analysis:

- Characterize in particular metabolic mechanisms $\left(V_{\max }, K_{m}\right)$ and how these vary in the population
- Understand relationship between metabolic processes and toxicities

Applications

$$
\begin{gathered}
C_{\mathrm{art}}=\frac{F_{\mathrm{card}} C_{\mathrm{ven}}+F_{\mathrm{alv}} C_{\mathrm{inh}}}{F_{\mathrm{card}}+F_{\mathrm{alv}} / P_{\mathrm{blood} / \mathrm{air}}}, \quad C_{\mathrm{ven}}=\sum_{s} \frac{F_{s} C_{s}}{F_{\mathrm{card}}} \\
C_{\mathrm{exh}}=(1-\delta) \frac{C_{\mathrm{art}}}{P_{\mathrm{blood} / \mathrm{air}}}+\delta C_{\mathrm{inh}} \\
\frac{d C_{s}}{d t}=\frac{F_{s}}{V_{s}}\left(C_{\mathrm{art}}-\frac{C_{s}}{P_{s / \mathrm{blood}}}\right), \quad s=\mathrm{wp}, \mathrm{pp}, \text { fat } \\
\frac{d C_{\mathrm{liv}}}{d t}=\frac{F_{\text {liv }}}{V_{\mathrm{liv}}}\left(C_{\mathrm{art}}-\frac{C_{\mathrm{liv}}}{P_{\mathrm{liv} / \mathrm{blood}}}\right)-R_{\mathrm{liv}}(s=\mathrm{liv}) \\
R_{\mathrm{liv}}=\frac{V_{\max } C_{\mathrm{liv}}}{V_{\mathrm{liv}}\left(K_{m}+C_{\mathrm{liv}}\right)}
\end{gathered}
$$

Applications

HIV dynamics: Human immunodeficiency virus (HIV), attacks the immune system

- Broad goal: Characterize mechanisms underlying the interaction between HIV and the immune system over time governing disease progression and the effects of anti-retroviral treatments (ART)
- Typical study: N subjects, repeated measurements on viral load (virologic status), CD4 $+T$ cell count (immunologic status) over time (possibly on/off ART)
- Compartmental representation of mechanisms taking place within an infected subject
- System of (deterministic) nonlinear ordinary differential equations; \Longrightarrow viral load, $C D 4+T$ cell count, etc, at any time

Applications

Simple model for within-subject HIV dynamics:

Applications

Differential equations:

$$
\begin{aligned}
\dot{T}_{1}= & \lambda_{1}-d_{1} T_{1}-\left\{1-\epsilon_{1} U(t)\right\} k_{1} V_{I} T_{1} \\
\dot{T}_{2}= & \lambda_{2}-d_{2} T_{2}-\left\{1-f \epsilon_{1} U(t)\right\} k_{2} V_{I} T_{2} \\
\dot{T}_{1}^{*}= & \left\{1-\epsilon_{1} U(t)\right\} k_{1} V_{I} T_{1}-\delta T_{1}^{*}-m_{2} E T_{1}^{*} \\
\dot{T}_{2}^{*}= & \left\{1-f \epsilon_{1} U(t)\right\} k_{2} V_{I} T_{2}-\delta T_{2}^{*}-m_{2} E T_{2}^{*} \\
\dot{V}_{I}= & \left\{1-\epsilon_{2} U(t)\right\} 10^{3} N_{T} \delta\left(T_{1}^{*}+T_{2}^{*}\right)-c V_{I} \\
& -\left\{1-\epsilon_{1} U(t)\right\} \rho_{1} 10^{3} k_{1} T_{1} V_{I}-\left\{1-f \epsilon_{1} U(t)\right\} \rho_{2} 10^{3} k_{2} T_{2} V_{I} \\
\dot{V}_{N I}= & \epsilon_{2} U(t) 10^{3} N_{T} \delta\left(T_{1}^{*}+T_{2}^{*}\right)-c V_{N I} \\
\dot{E}= & \lambda_{E}+\frac{b_{E}\left(T_{1}^{*}+T_{2}^{*}\right)}{\left(T_{1}^{*}+T_{2}^{*}\right)+K_{b}} E-\frac{d_{E}\left(T_{1}^{*}+T_{2}^{*}\right)}{\left(T_{1}^{*}+T_{2}^{*}\right)+K_{d}} E-\delta_{E} E
\end{aligned}
$$

- $\boldsymbol{\theta}=\left(\lambda_{1}, d_{1}, \epsilon_{1}, k_{1}, \ldots\right)^{\prime}$ plus initial conditions
- Observable: CD4 count $=T_{1}+T_{1}^{*}$, viral load $=V_{I}+V_{N I}$
- $U(t)=$ ART input at $t(0 \leq U(t) \leq 1,0=$ off, $1=$ on $)$

Applications

Objectives of analysis: Characterize typical values of and variation in $\boldsymbol{\theta}$ across the population, elucidate systematic associations between $\boldsymbol{\theta}$ and patient characteristics, simulate disease progression under different $U(t)$

Applications

Summary: Common themes

- A response (or responses) evolves over time (e.g., concentration in PK)
- Interest focuses on underlying mechanisms/processes taking place within an individual leading to response trajectories and how these vary across the population
- A (usually deterministic) model is available representing mechanisms explicitly by scientifically meaningful model parameters
- Mechanisms cannot be observed directly
- \Longrightarrow Inference on mechanisms must be based on repeated measurements of the response over time on each of a sample of N individuals from the population

Applications

Other application areas:

- Stability testing
- Agriculture
- Forestry
- Dairy science
- Cancer dynamics
- Many more...

For definiteness: We will use $P K$ as a running example

Model formulation

Non-linear mixed effects model: Embed the (deterministic) model describing individual trajectories in a statistical model

- Formalizes knowledge and assumptions about variation in responses and mechanisms within and among individuals
- Provides a framework for inference based on repeated measurement data from N individuals
- For simplicity: Focus on univariate response ($=$ drug concentration in PK); some discussion of multivariate response at the end

Basic set-up: N individuals from a population of interest, $i=1, \ldots, N$

- For individual i, observe n_{i} measurements of the response

$$
Y_{i 1}, Y_{i 2}, \ldots, Y_{i n_{i}} \quad \text { at times } \quad t_{i 1}, t_{i 2}, \ldots, t_{i n_{i}}
$$

- I.e., for individual $i, Y_{i j}$ at time $t_{i j}, j=1, \ldots, n_{i}$

Model formulation

Within-individual conditions of observation: For individual i, \boldsymbol{U}_{i}

- Theophylline: $\boldsymbol{U}_{i}=D_{i}=$ oral dose for i at time $0(\mathrm{mg} / \mathrm{kg})$
- Argatroban: $\boldsymbol{U}_{i}=\left(D_{i}, t_{\text {inf }}\right)=$ infusion rate and duration for i
- Quinidine: For subject i observed over d_{i} dosing intervals, \boldsymbol{U}_{i} has elements $\left(s_{i \ell}, D_{i \ell}\right)^{\prime}, \ell=1, \ldots, d_{i}$
- HIV dynamics: \boldsymbol{U}_{i} is continuous function $U_{i}(t)$ with subject i 's known treatment status at any time t
- U_{i} are "within-individual covariates" - needed to describe response-time relationship at the individual level

Model formulation

Individual characteristics: For individual i, \boldsymbol{A}_{i}

- Age, weight, ethnicity, smoking status, etc. . .
- For now: Elements of \boldsymbol{A}_{i} do not change over observation period (will discuss changing elements later)
- \boldsymbol{A}_{i} are "among-individual covariates" - relevant only to how individuals differ but are not needed to describe response-time relationship at individual level

Observed data: $\left(\boldsymbol{Y}_{i}^{\prime}, \boldsymbol{X}_{i}^{\prime}\right)^{\prime}, i=1, \ldots, N$, assumed independent across i

- $\boldsymbol{Y}_{i}=\left(Y_{i 1}, \ldots, Y_{i n_{i}}\right)^{\prime}$
- $\boldsymbol{X}_{i}=\left(\boldsymbol{U}_{i}^{\prime}, \boldsymbol{A}_{i}^{\prime}\right)^{\prime}=$ combined within- and among-individual covariates (for brevity later)

Basic model: A two-stage hierarchy

Model formulation

Stage 1 - Individual-level model:

$$
Y_{i j}=m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)+e_{i j}, j=1, \ldots, n_{i}, \quad \boldsymbol{\theta}_{i}(r \times 1)
$$

- E.g., for theophylline $(F \equiv 1)$

$$
\begin{gathered}
m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\frac{k_{a i} D_{i}}{V_{i}\left(k_{a i}-C l_{i} / V_{i}\right)}\left\{\exp \left(-C l_{i} t / V_{i}\right)-\exp \left(-k_{a i} t\right)\right\} \\
\boldsymbol{\theta}_{i}=\left(k_{a i}, V_{i}, C l_{i}\right)^{\prime}=\left(\theta_{i 1}, \theta_{i 2}, \theta_{i 3}\right)^{\prime}, r=3, \quad \boldsymbol{U}_{i}=D_{i}
\end{gathered}
$$

- Assume $e_{i j}=Y_{i j}-m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ satisfy $E\left(e_{i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=0$

$$
\Longrightarrow E\left(Y_{i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right) \text { for each } j
$$

- Standard assumption: $e_{i j}$ and hence $Y_{i j}$ are conditionally normally distributed (on $\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}$)
- More shortly...

Model formulation

Stage 2 - Population model:

$$
\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), i=1, \ldots, N, \quad(r \times 1)
$$

- \boldsymbol{d} is r-dimensional function describing relationship between $\boldsymbol{\theta}_{i}$ and \boldsymbol{A}_{i} in terms of \ldots
- $\boldsymbol{\beta}(p \times 1)$ fixed parameter ("fixed effects")
- $\boldsymbol{b}_{i}(q \times 1)$ "random effects"
- Characterizes how elements of $\boldsymbol{\theta}_{i}$ vary across individual due to
- Systematic associations with \boldsymbol{A}_{i} (modeled via $\boldsymbol{\beta}$)
- "Unexplained variation" in the population (represented by \boldsymbol{b}_{i})
- Usual assumptions:
$E\left(\boldsymbol{b}_{i} \mid \boldsymbol{A}_{i}\right)=E\left(\boldsymbol{b}_{i}\right)=\mathbf{0} \quad$ and $\quad \operatorname{Cov}\left(\boldsymbol{b}_{i} \mid \boldsymbol{A}_{i}\right)=\operatorname{Cov}\left(\boldsymbol{b}_{i}\right)=G, \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G)$

Model formulation

Stage 2 - Population model:

$$
\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), i=1, \ldots, N
$$

Example: Quinidine, $\boldsymbol{\theta}_{i}=\left(k_{a i}, V_{i}, C l_{i}\right)^{\prime}(r=3)$

- $\boldsymbol{A}_{i}=\left(w_{i}, \delta_{i}, a_{i}\right)^{\prime}, w_{i}=$ weight, , $a_{i}=$ age, $\delta_{i}=I($ creatinine clearance $>50 \mathrm{ml} / \mathrm{min})$
- $\boldsymbol{b}_{i}=\left(b_{i 1}, b_{i 2}, b_{i 3}\right)^{\prime}(q=3), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{7}\right)^{\prime}(p=7)$
$k_{a i}=\theta_{i 1}=d_{1}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)=\exp \left(\beta_{1}+b_{i 1}\right)$,
$V_{i}=\theta_{i 2}=d_{2}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)=\exp \left(\beta_{2}+\beta_{4} w_{i}+b_{i 2}\right)$,
$C l_{i}=\theta_{i 3}=d_{3}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)=\exp \left(\beta_{3}+\beta_{5} w_{i}+\beta_{6} \delta_{i}+\beta_{7} a_{i}+b_{i 3}\right)$,
- Positivity of $k_{a i}, V_{i}, C l_{i}$ enforced
- If $\boldsymbol{b}_{i} \sim N(\mathbf{0}, G), k_{a i}, V_{i}, C l_{i}$ are each lognormally distributed in the population

Model formulation

Stage 2 - Population model:

$$
\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), i=1, \ldots, N
$$

Example: Quinidine, continued, $\boldsymbol{\theta}_{i}=\left(k_{a i}, V_{i}, C l_{i}\right)^{\prime}(r=3)$

- "Are elements of $\boldsymbol{\theta}_{i}$ fixed or random effects?"
- "Unexplained variation" in one component of $\boldsymbol{\theta}_{i}$ "small" relative to others - no associated random effect, e.g., $r=3, q=2$

$$
\begin{aligned}
k_{a i} & =\exp \left(\beta_{1}+b_{i 1}\right) \\
V_{i} & =\exp \left(\beta_{2}+\beta_{4} w_{i}\right) \quad \text { (all population variation due to weight) } \\
C l_{i} & =\exp \left(\beta_{3}+\beta_{5} w_{i}+\beta_{6} \delta_{i}+\beta_{7} a_{i}+b_{i 3}\right)
\end{aligned}
$$

- An approximation - usually biologically implausible; used for parsimony, numerical stability

Model formulation

Stage 2 - Population model:

$$
\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), i=1, \ldots, N
$$

- Allows non-linear (in $\boldsymbol{\beta}$ and \boldsymbol{b}_{i}) specifications for elements of $\boldsymbol{\theta}_{i}$
- May be more appropriate than linear specifications (positivity requirements, skewed distributions)

Some accounts: Restrict to linear specification

$$
\boldsymbol{\theta}_{i}=A_{i} \boldsymbol{\beta}+B_{i} \boldsymbol{b}_{i}
$$

- $A_{i}(r \times p)$ "design matrix" depending on elements of \boldsymbol{A}_{i}
- $B_{i}(r \times q)$ typically 0 s and 1 s (identity matrix if $r=q$)
- Mainly in the statistical literature

Model formulation

Stage 2 - Linear population model:

$$
\boldsymbol{\theta}_{i}=A_{i} \boldsymbol{\beta}+B_{i} \boldsymbol{b}_{i}
$$

Example: Quinidine, continued

- Reparameterize in terms of $\boldsymbol{\theta}_{i}=\left(k_{a i}^{*}, V_{i}^{*}, C l_{i}^{*}\right)^{\prime}, k_{a i}^{*}=\log \left(k_{a i}\right)$, $V_{i}^{*}=\log \left(V_{i}\right)$, and $C l_{i}^{*}=\log \left(C l_{i}\right)(r=3)$

$$
\begin{aligned}
k_{a i}^{*} & =\beta_{1}+b_{i 1} \\
V_{i}^{*} & =\beta_{2}+\beta_{4} w_{i}+b_{i 2} \\
C l_{i}^{*} & =\beta_{3}+\beta_{5} w_{i}+\beta_{6} \delta_{i}+\beta_{7} a_{i}+b_{i 3}
\end{aligned}
$$

$$
A_{i}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & w_{i} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & w_{i} & \delta_{i} & a_{i}
\end{array}\right), \quad B_{i}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Model formulation

Within-individual considerations: Complete the Stage 1 individual-level model

- Assumptions on the distribution of \boldsymbol{Y}_{i} given \boldsymbol{U}_{i} and $\boldsymbol{\theta}_{i}$
- Focus on a single individual i observed under conditions \boldsymbol{U}_{i}
- $Y_{i j}$ at times $t_{i j}$ viewed as intermittent observations on a stochastic process

$$
\begin{gathered}
Y_{i}\left(t, \boldsymbol{U}_{i}\right)=m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)+e_{i}\left(t, \boldsymbol{U}_{i}\right) \\
E\left\{e_{i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=0, \quad E\left\{Y_{i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right) \text { for all } t \\
\bullet Y_{i j}=Y_{i}\left(t_{i j}, \boldsymbol{U}_{i}\right), e_{i j}=e_{i}\left(t_{i j}, \boldsymbol{U}_{i}\right)
\end{gathered}
$$

- "Deviation" process $e_{i}\left(t, \boldsymbol{U}_{i}\right)$ represents all sources of variation acting within an individual causing a realization of $Y_{i}\left(t, \boldsymbol{U}_{i}\right)$ to deviate from the "smooth" trajectory $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$

Model formulation

Conceptualization:

Model formulation

Conceptual interpretation:

- Solid line: $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ represents "inherent tendency" for i 's response to evolve over time; depends on i 's "inherent characteristics" $\boldsymbol{\theta}_{i}$
- Dashed line: Actual realization of the response - fluctuates about solid line because $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ is a simplification of complex truth
- Symbols: Actual, intermittent measurements of the dashed line deviate from the dashed line due to measurement error

Result: Two sources of intra-individual variation

- "Realization deviation"
- Measurement error variation
- $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ is the average of all possible realizations of measured response trajectory that could be observed on i

Model formulation

To formalize: $e_{i}\left(t, \boldsymbol{U}_{i}\right)=e_{R, i}\left(t, \boldsymbol{U}_{i}\right)+e_{M, i}\left(t, \boldsymbol{U}_{i}\right)$

- Within-individual stochastic process

$$
\begin{gathered}
Y_{i}\left(t, \boldsymbol{U}_{i}\right)=m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)+e_{R, i}\left(t, \boldsymbol{U}_{i}\right)+e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \\
E\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=E\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=0 \\
\cdots Y_{i j}=Y_{i}\left(t_{i j}, \boldsymbol{U}_{i}\right), e_{R, i}\left(t_{i j}, \boldsymbol{U}_{i}\right)=e_{R, i j}, e_{M, i}\left(t_{i j}, \boldsymbol{U}_{i}\right)=e_{M, i j} \\
Y_{i j}=m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)+\underbrace{e_{R, i j}+e_{M, i j}}_{e_{i j}} \\
\boldsymbol{e}_{R, i}=\left(e_{R, i 1}, \ldots, e_{R, i n_{i}}\right)^{\prime}, \quad \boldsymbol{e}_{M, i}=\left(e_{M, i 1}, \ldots, e_{M, i n_{i}}\right)^{\prime}
\end{gathered}
$$

- $e_{R, i}\left(t, \boldsymbol{U}_{i}\right)=$ "realization deviation process"
- $e_{M, i}\left(t, \boldsymbol{U}_{i}\right)=$ "measurement error deviation process"
- Assumptions on $e_{R, i}\left(t, \boldsymbol{U}_{i}\right)$ and $e_{M, i}\left(t, \boldsymbol{U}_{i}\right)$ lead to a model for $\operatorname{Cov}\left(\boldsymbol{e}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ and hence $\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$

Model formulation

Conceptualization:

Model formulation

Realization deviation process:

- Natural to expect $e_{R, i}\left(t, \boldsymbol{U}_{i}\right)$ and $e_{R, i}\left(s, \boldsymbol{U}_{i}\right)$ at times t and s to be positively correlated, e.g.,

$$
\operatorname{corr}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right), e_{R, i}\left(s, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\exp (-\rho|t-s|), \quad \rho \geq 0
$$

- Assume variation of realizations about $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ are of similar magnitude over time and individuals, e.g.,

$$
\operatorname{Var}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\sigma_{R}^{2} \geq 0 \quad(\text { constant for all } t)
$$

- Or assume variation depends on $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$, e.g.,

$$
\operatorname{Var}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\sigma_{R}^{2}\left\{m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)\right\}^{2 \eta}, \quad \eta>0
$$

- Result: Assumptions imply a covariance model $\left(n_{i} \times n_{i}\right)$

$$
\left.\operatorname{Cov}\left(\boldsymbol{e}_{R, i} \mid \boldsymbol{U}\right)_{i}, \boldsymbol{\theta}_{i}\right)=V_{R, i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}_{R}\right), \quad \boldsymbol{\alpha}_{R}=\left(\sigma_{R}^{2}, \rho\right)^{\prime} \text { or } \boldsymbol{\alpha}_{R}=\left(\sigma_{R}^{2}, \rho, \eta\right)^{\prime}
$$

Model formulation

Conceptualization:

Model formulation

Measurement error deviation process:

- Measuring devices commit haphazard errors \Longrightarrow

$$
\operatorname{corr}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right), e_{M, i}\left(s, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=0 \text { for all } t>s
$$

- Assume magnitude of errors is similar regardless of level, e.g.,

$$
\operatorname{Var}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\sigma_{M}^{2} \geq 0 \quad(\text { constant for all } t)
$$

- Or assume magnitude changes with level; often approximated under assumption $\operatorname{Var}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\} \ll \operatorname{Var}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}$

$$
\operatorname{Var}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\sigma_{M}^{2}\left\{m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)\right\}^{2 \zeta}, \quad \zeta>0
$$

- Result: Assumptions imply a covariance model $\left(n_{i} \times n_{i}\right)$ (diagonal matrix)

$$
\left.\operatorname{Cov}\left(\boldsymbol{e}_{M, i} \mid \boldsymbol{U}\right)_{i}, \boldsymbol{\theta}_{i}\right)=V_{M, i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}_{R}\right), \quad \boldsymbol{\alpha}_{M}=\sigma_{M}^{2} \text { or } \boldsymbol{\alpha}_{M}=\left(\sigma_{M}^{2}, \zeta\right)^{\prime}
$$

Model formulation

Combining:

- Standard assumption : $e_{R, i}\left(t, \boldsymbol{U}_{i}\right)$ and $e_{M, i}\left(t, \boldsymbol{U}_{i}\right)$ are independent

$$
\begin{aligned}
\operatorname{Cov}\left(\boldsymbol{e}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)= & \operatorname{Cov}\left(\boldsymbol{e}_{R, i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)+\operatorname{Cov}\left(\boldsymbol{e}_{M, i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right) \\
= & V_{R, i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}_{R}\right)+V_{M, i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}_{M}\right) \\
= & V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right) \\
& \boldsymbol{\alpha}=\left(\boldsymbol{\alpha}_{R}^{\prime}, \boldsymbol{\alpha}_{M}^{\prime}\right)^{\prime}
\end{aligned}
$$

- This assumption may or may not be realistic

Practical considerations: Quite complex intra-individual covariance models can result from faithful consideration of the situation...

- ... But may be difficult to implement

Model formulation

Standard model simplifications: One or more might be adopted

- Negligible measurement error \Longrightarrow

$$
V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{R, i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}_{R}\right)
$$

- The $t_{i j}$ may be at widely spaced intervals \Longrightarrow autocorrelation among $e_{R, i j}$ negligible $\Longrightarrow V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)$ is diagonal
- $\operatorname{Var}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\} \ll \operatorname{Var}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\} \Longrightarrow$ measurement error is dominant source
- Simplifications should be justifiable in the context at hand

Note: All of these considerations apply to any mixed-effects model formulation, not just non-linear ones!

Model formulation

Routine assumption: $V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=\sigma_{e}^{2} I_{n_{i}} \boldsymbol{\alpha}=\sigma_{e}^{2}$

- Often made by "default" with little consideration of the assumptions it implies!
- Assumes autocorrelation among $e_{R, i j}$ negligible
- Assumes constant variances, i.e., $\operatorname{Var}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\sigma_{R}^{2}$ and $\operatorname{Var}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}=\sigma_{M}^{2} \Longrightarrow \sigma_{e}^{2}=\sigma_{R}^{2}+\sigma_{M}^{2}$
- If measurement error is negligible $\Longrightarrow \sigma_{e}^{2}=\sigma_{R}^{2}$
- If $\operatorname{Var}\left\{e_{R, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\} \ll \operatorname{Var}\left\{e_{M, i}\left(t, \boldsymbol{U}_{i}\right) \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right\}$ $\Longrightarrow \sigma_{e} \approx \sigma_{M}^{2}$

Model formulation

Standard assumptions in PK:

- Sampling times are sufficiently far apart that autocorrelation among $e_{R, i j}$ negligible (not always justifiable!)
- Measurement error dominates realization error so that

$$
\operatorname{Var}\left(e_{R, i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right) \ll \operatorname{Var}\left(e_{M, i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)
$$

(often reasonable)

- Measurement error variance depends on level, approximated by

$$
\operatorname{Var}\left(e_{M, i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\sigma_{M}^{2}\left\{m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)\right\}^{2 \zeta}
$$

so that $V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{M, i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}_{M}\right)$ is diagonal with these elements (almost always the case)

Model formulation

Distributional assumption:

- Specification for $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$,

$$
\boldsymbol{m}_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\left\{m\left(t_{i 1}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right), \ldots, m\left(t_{i n_{i}}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)\right\}^{\prime} \quad\left(n_{i} \times 1\right)
$$

- Specification for $\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)$
- Standard assumption: Distribution of \boldsymbol{Y}_{i} given \boldsymbol{U}_{i} and $\boldsymbol{\theta}_{i}$ is multivariate normal with these moments
- Alternatively, model on the log scale $\Longrightarrow Y_{i j}$ are conditionally (on \boldsymbol{U}_{i} and $\boldsymbol{\theta}_{i}$) lognormal
- In what follows: $Y_{i j}$ denotes the response on the original or transformed scale as appropriate

Model formulation

Summary of the two-stage model: Recall $\boldsymbol{X}_{i}=\left(\boldsymbol{U}_{i}^{\prime}, \boldsymbol{A}_{i}^{\prime}\right)^{\prime}$

- Substitute population model for $\boldsymbol{\theta}_{i}$ in individual-level model
- Stage 1 - Individual-level model:
$E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right)=E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)$,
$\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right)=\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right)$
- Stage 2 - Population model:

$$
\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), \quad \boldsymbol{b}_{i} \sim(\mathbf{0}, G)
$$

- Standard assumptions:
$-\boldsymbol{Y}_{i}$ given \boldsymbol{X}_{i} and \boldsymbol{b}_{i} multivariate normal (perhaps transformed)
- $\boldsymbol{b}_{i} \sim N(\mathbf{0}, G)$
- All of these can be relaxed

Model interpretation and inferential objectives

"Subject-specific" model:

- Individual behavior is modeled explicitly at Stage 1, depending on individual-specific parameters $\boldsymbol{\theta}_{i}$ that have scientifically meaningful interpretation
- Models for $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ and $\boldsymbol{\theta}_{i}$, and hence $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right)$, are specified...
- ... in contrast to a "population-averaged" model, where a model for $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)$ is specified directly (more on this momentarily...)
- This is consistent with the inferential objectives
- Interest is in "typical" values of $\boldsymbol{\theta}_{i}$ and how they vary in the population...

Model interpretation and inferential objectives

Main inferential objectives: May be formalized in terms of the model

- For a specific population model \boldsymbol{d}, the fixed effect $\boldsymbol{\beta}$ characterizes the mean or median ("typical") value of $\boldsymbol{\theta}_{i}$ in the population (perhaps for individuals with given value of \boldsymbol{A}_{i})
- \Longrightarrow Determining an appropriate population model $\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)$ and inference on elements of $\boldsymbol{\beta}$ in it is of central interest
- Variation of $\boldsymbol{\theta}_{i}$ across individuals beyond that attributable to systematic associations with among-individual covariates \boldsymbol{A}_{i} is described by G ("unexplained variation")
- \Longrightarrow Inference on G is of interest (in particular, diagonal elements)

Model interpretation and inferential objectives

Additional inferential objectives: In some contexts

- Inference on $\boldsymbol{\theta}_{i}$ and/or $m\left(t_{0}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ at some specific time t_{0} for $i=1, \ldots, N$ or for future individuals is of interest
- Example: "Individualized" dosing in PK
- The model is a natural framework for "borrowing strength" across similar individuals (more later)

Model interpretation and inferential objectives

"Subject-specific" vs. "Population-averaged":

- The non-linear mixed model is a "subject-specific" model \Longrightarrow Interest is in "typical" values of individual-specific parameters (mechanisms), $\boldsymbol{\theta}_{i}$, and how they vary in the population
- A "population-averaged" model describes the "typical" response pattern (averaged over individuals in the population), $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)$, and the overall variation in response patterns about it, $\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)$
- \Longrightarrow In a "population-averaged" model, individual-specific behavior is not acknowledged; rather, it is "averaged out" in advance, i.e.,

$$
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)=\int E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right) d F_{b}\left(\boldsymbol{b}_{i}\right)
$$

$\Longrightarrow E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)$ is specified directly; a representation for $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right)$ is never specified

Model interpretation and inferential objectives

"Subject-specific" vs. "Population-averaged":

- "Population-averaged" model cannot incorporate theoretical assumptions embedded in the model $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ for individual behavior
- In fact, using m as a model for $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)$ makes no scientific sense (although it may provide a reasonable empirical representation of the "typical" response pattern) - impossible for

$$
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)=\int \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right) d F_{b}\left(\boldsymbol{b}_{i}\right)=m\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}\right)
$$

- In the applications here, the response is of interest because it carries information on the $\boldsymbol{\theta}_{i}$, but average response itself is of little or no importance \Longrightarrow "population-averaged" model is not appropriate

Model interpretation and inferential objectives

"Subject-specific" model \Longrightarrow "population-averaged" model:

$$
\begin{aligned}
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & =\int \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right) d F_{b}\left(\boldsymbol{b}_{i}\right) \\
\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & =E\left\{V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right) \mid \boldsymbol{X}_{i}\right\}+\operatorname{Cov}\left\{\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right) \mid \boldsymbol{X}_{i}\right\}
\end{aligned}
$$

- $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right)$ is complicated function of $\boldsymbol{\beta}$ and $G \Longrightarrow \boldsymbol{\beta}$ alone does not describe the population average
- $E\left\{V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right) \mid \boldsymbol{X}_{i}\right\}=$ average of realization/measurement variation over population \Longrightarrow diagonal only if autocorrelation of within-individual realizations negligible
- $\operatorname{Cov}\left\{\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right) \mid \boldsymbol{X}_{i}\right\}=$ population variation in "inherent trajectories" \Longrightarrow non-diagonal in general
- \Longrightarrow Overall pattern of variation/covariation in the response is the aggregate due to both sources
- I prefer "aggregate" covariance to "within-individual" covariance

Break

Inferential approaches

Reminder - summary of the two-stage model: $\boldsymbol{X}_{i}=\left(\boldsymbol{U}_{i}^{\prime}, \boldsymbol{A}_{i}^{\prime}\right)^{\prime}$

- Stage 1 - Individual-level model:

$$
\begin{aligned}
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right) & =E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), \\
\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right) & =\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

- Stage 2 - Population model:

$$
\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), \quad \boldsymbol{b}_{i} \sim(\mathbf{0}, G)
$$

- Standard assumptions:
- \boldsymbol{Y}_{i} given \boldsymbol{X}_{i} and \boldsymbol{b}_{i} multivariate normal (perhaps transformed) \Longrightarrow probability density function $f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \boldsymbol{\beta}, \boldsymbol{\alpha}\right)$
- $\boldsymbol{b}_{i} \sim N(\mathbf{0}, G) \Longrightarrow$ density $f\left(\boldsymbol{b}_{i} ; G\right)$
- Observed data: $\left\{\left(\boldsymbol{Y}_{i}, \boldsymbol{X}_{i}\right), i=1, \ldots, N\right\}=(\boldsymbol{Y}, \boldsymbol{X})$, $\left(\boldsymbol{Y}_{i}, \boldsymbol{X}_{i}\right)$ assumed independent across i

Inferential approaches

Natural basis for inference on β, G : Maximum likelihood

- Joint density of \boldsymbol{Y} given \boldsymbol{X} (by independence)

$$
f(\boldsymbol{y} \mid \boldsymbol{x} ; \boldsymbol{\gamma}, G)=\prod_{i=1}^{N} f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} ; \gamma, G\right), \quad \gamma=\left(\boldsymbol{\beta}^{\prime}, \boldsymbol{\alpha}^{\prime}\right)^{\prime}
$$

- $f_{i}\left(\boldsymbol{y}_{i}, \boldsymbol{b}_{i} \mid \boldsymbol{x}_{i} ; \gamma, G\right)=f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right)$
- Log-likelihood for (γ, G)

$$
\begin{aligned}
\ell(\boldsymbol{\gamma}, G) & =\log \left\{\prod_{i=1}^{N} f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\gamma}, G\right)\right\} \\
& =\log \left\{\prod_{i=1}^{N} \int f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right) d \boldsymbol{b}_{i}\right\}
\end{aligned}
$$

- Involves N q-dimensional integrals

Inferential approaches

$$
\ell(\boldsymbol{\gamma}, G)=\log \left\{\prod_{i=1}^{N} \int f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \boldsymbol{\gamma}\right) f\left(\boldsymbol{b}_{i} ; G\right) d \boldsymbol{b}_{i}\right\}
$$

Major practical issue: These integrals are analytically intractable in general and may be high-dimensional

- Some means of approximation of the integrals required
- Analytical approximation (the approach used historically, first by PKists) - will discuss first
- Numerical approximation (more recent, as computational resources have improved)

Inferential approaches

Inference based on individual estimates: If $n_{i} \geq r$, can (in principle) obtain individual regression estimates $\widehat{\boldsymbol{\theta}}_{i}$

- E.g., if $V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=\sigma_{e}^{2} I_{n_{i}}$ can use ordinary least squares for each i
- For fancier $V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)$ can use generalized (weighted) least squares for each i with an estimate of $\boldsymbol{\alpha}$ substituted
- $\boldsymbol{\alpha}$ can be estimated by "pooling" residuals across all N individuals
- Realistically: Require $n_{i} \gg r$
- Described in Chapter 5 of Davidian and Giltinan (1995)

Idea: Use the $\widehat{\boldsymbol{\theta}}_{i}, i=1, \ldots, N$, as "data" to estimate $\boldsymbol{\beta}$ and $G \ldots$

Inferential approaches

Idea: Use the $\widehat{\boldsymbol{\theta}}_{i}, i=1, \ldots, N$, as "data" to estimate $\boldsymbol{\beta}$ and G

- Consider linear population model $\boldsymbol{\theta}_{i}=A_{i} \boldsymbol{\beta}+B_{i} \boldsymbol{b}_{i}$
- Standard large- n_{i} asymptotic theory \Longrightarrow

$$
\widehat{\boldsymbol{\theta}}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i} \dot{\sim} N\left(\boldsymbol{\theta}_{i}, C_{i}\right), \quad C_{i} \text { depends on } \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}
$$

- Estimate C_{i} by substituting $\widehat{\boldsymbol{\theta}}_{i}, \widehat{\boldsymbol{\alpha}} \Longrightarrow \widehat{\boldsymbol{\theta}}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i} \dot{\sim} N\left(\boldsymbol{\theta}_{i}, \widehat{C}_{i}\right)$ and treat \widehat{C}_{i} as fixed
- Write as $\quad \widehat{\boldsymbol{\theta}}_{i} \approx \boldsymbol{\theta}_{i}+\boldsymbol{e}_{i}^{*}, \boldsymbol{e}_{i}^{*} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i} \dot{\sim} N\left(\mathbf{0}, \widehat{C}_{i}\right)$
- \Longrightarrow Approximate "linear mixed-effects model" for "response" $\widehat{\boldsymbol{\theta}}_{i}$

$$
\widehat{\boldsymbol{\theta}}_{i} \approx A_{i} \boldsymbol{\beta}+B_{i} \boldsymbol{b}_{i}+\boldsymbol{e}_{i}^{*}, \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G), \quad \boldsymbol{e}_{i}^{*} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i} \dot{\sim} N\left(\mathbf{0}, \widehat{C}_{i}\right)
$$

- Can be fitted (estimate $\boldsymbol{\beta}, G$) using standard linear mixed model methods (treating \widehat{C}_{i} as fixed)

Inferential approaches

$$
\widehat{\boldsymbol{\theta}}_{i} \approx A_{i} \boldsymbol{\beta}+B_{i} \boldsymbol{b}_{i}+\boldsymbol{e}_{i}^{*}, \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G), \quad \boldsymbol{e}_{i}^{*} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i} \dot{\sim} N\left(\mathbf{0}, \widehat{C}_{i}\right)
$$

Fitting the "linear mixed model":

- "Global two-stage algorithm" (GTS): Fit using the EM algorithm; see Davidian and Giltinan (1995, Chapter 5)
- Use standard linear mixed model software such as SAS proc mixed, R function lme - requires some tweaking to handle the fact that \widehat{C}_{i} is regarded as known
- Appeal to usual large- N asymptotic theory for the "linear mixed model" to obtain standard errors for elements of $\widehat{\boldsymbol{\beta}}$, confidence intervals for elements of $\boldsymbol{\beta}$, etc (generally works well)

Common misconception: This method is often portrayed in the literature as having no relationship to the non-linear mixed-effects model

Inferential approaches

How does this approximate the integrals? Not readily apparent

- May view the $\widehat{\boldsymbol{\theta}}_{i}$ as approximate "sufficient statistics" for the $\boldsymbol{\theta}_{i}$
- Change of variables in the integrals and replace $f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \boldsymbol{\gamma}\right)$ by the (normal) density $f\left(\widehat{\boldsymbol{\theta}}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i} ; \boldsymbol{\alpha}\right)$ corresponding to the asymptotic approximation

Remarks:

- When all n_{i} are sufficiently large to justify the asymptotic approximation (e.g., intensive PK studies), I like this method!
- Easy to explain to collaborators
- Gives similar answers to other analytical approximation methods (coming up)
- Drawback: No standard software (although see my website for R/SAS code)

Inferential approaches

In many settings: "Rich" individual data not available for all i (e.g., population PK studies); i.e., n_{i} "not large" for some or all i

- Approximate the integrals more directly by approximating

$$
f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} ; \boldsymbol{\gamma}, G\right)
$$

Write model with normality assumptions at both stages:

$$
\boldsymbol{Y}_{i}=\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)+V_{i}^{1 / 2}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right) \boldsymbol{\epsilon}_{i}, \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G)
$$

- $V_{i}^{1 / 2}\left(n_{i} \times n_{i}\right)$ such that $V_{i}^{1 / 2}\left(V_{i}^{1 / 2}\right)^{\prime}=V_{i}$
- $\boldsymbol{\epsilon}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i} \sim N\left(\mathbf{0}, I_{n_{i}}\right)\left(n_{i} \times 1\right)$
- First-order Taylor series about $\boldsymbol{b}_{i}=\boldsymbol{b}_{i}^{*}$ "close" to \boldsymbol{b}_{i}, ignoring cross-product $\left(\boldsymbol{b}_{i}-\boldsymbol{b}_{i}^{*}\right) \boldsymbol{\epsilon}_{i}$ as negligible \Longrightarrow

$$
\begin{gathered}
\boldsymbol{Y}_{i} \approx \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right)-Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right) \boldsymbol{b}_{i}^{*}+Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right) \boldsymbol{b}_{i}+V_{i}^{1 / 2}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}, \boldsymbol{\alpha}\right) \boldsymbol{\epsilon}_{i} \\
Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right)=\partial /\left.\partial \boldsymbol{b}_{i}\left\{\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)\right\}\right|_{\boldsymbol{b}_{i}=\boldsymbol{b}_{i}^{*}}
\end{gathered}
$$

Inferential approaches

$\boldsymbol{Y}_{i} \approx \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right)-Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right) \boldsymbol{b}_{i}^{*}+Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}\right) \boldsymbol{b}_{i}+V_{i}^{1 / 2}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}^{*}, \boldsymbol{\alpha}\right) \boldsymbol{\epsilon}_{i}$
"First-order" method: Take $\boldsymbol{b}_{i}^{*}=\mathbf{0}$ (mean of \boldsymbol{b}_{i})

- \Longrightarrow Distribution of \boldsymbol{Y}_{i} given \boldsymbol{X}_{i} approximately normal with

$$
\begin{aligned}
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & \approx \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}\right) \\
\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & \approx Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}\right) G Z_{i}^{\prime}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}\right)+V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

- \Longrightarrow Approximate $f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} ; \gamma, G\right)$ by a normal density with these moments, so that $\ell(\gamma, G)$ is in a closed form
- \Longrightarrow Estimate $(\boldsymbol{\beta}, \boldsymbol{\alpha}, G)$ by maximum likelihood - because integrals are eliminated, is a direct optimization (but still very messy...)
- First proposed by Beal and Sheiner in early 1980s in the context of population PK

Inferential approaches

"First-order" method: Software

- fo method in the Fortran package nonmem (widely used by PKists)
- SAS proc nlmixed using the method=firo option (but cannot handle by default dependence of $V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right)$ on $\boldsymbol{\theta}_{i}$ and thus on $\boldsymbol{\beta}, \boldsymbol{b}_{i}$)

Alternative implementation: View as an approximate "population-averaged" model for mean and covariance

$$
\begin{aligned}
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & \approx \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}\right) \\
\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & \approx Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}\right) G Z_{i}^{\prime}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}\right)+V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \mathbf{0}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

- \Longrightarrow Estimate $(\boldsymbol{\beta}, \boldsymbol{\alpha}, G)$ by solving a set of generalized estimating equations (GEEs; specifically, "GEE-1")
- Is a different method from maximum likelihood ("GEE-2")
- Software: SAS macro nlinmix with expand=zero

Inferential approaches

Problem: These approximate moments are clearly poor approximations to the true moments

- In particular, poor approximation to $E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) \Longrightarrow$ biased estimators for $\boldsymbol{\beta}$
"First-order conditional methods": Use a "better" approximation
- Take \boldsymbol{b}_{i}^{*} "closer" to \boldsymbol{b}_{i}
- Natural choice: $\widehat{\boldsymbol{b}}_{i}=$ mode of the posterior density

$$
f\left(\boldsymbol{b}_{i} \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i} ; \boldsymbol{\gamma}, G\right)=\frac{f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right)}{f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} ; \gamma, G\right)}
$$

- \Longrightarrow Approximate moments

$$
\begin{aligned}
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & \approx \boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{b}}_{i}\right)-Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{b}}_{i}\right) \widehat{\boldsymbol{b}}_{i} \\
\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}\right) & \approx Z_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{b}}_{i}\right) G Z_{i}^{\prime}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{b}}_{i}\right)+V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \widehat{\boldsymbol{b}}_{i}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

Inferential approaches

Fitting algorithms: Iterate between
(i) Update $\widehat{\boldsymbol{b}}_{i}, i=1, \ldots, N$, by maximizing the posterior density (or approximation to it) with $\widehat{\gamma}$ and \widehat{G} substituted and held fixed
(ii) Hold the $\widehat{\boldsymbol{b}}_{i}$ fixed and update estimation of γ and G by either
(a) Maximizing the approximate normal log-likelihood based on treating \boldsymbol{Y}_{i} given \boldsymbol{X}_{i} as normal with these moments, $O R$
(b) Solving a corresponding set of GEEs

- Usually "converges" (although no guarantee)

Software:

- nonmem with foce option implements (ii)(a)
- R function nlme, SAS macro nlinmix with expand=blup option implement (ii)(b)

Inferential approaches

Standard errors, etc: For both "first-order" approximations

- Pretend that the approximate moments are exact and use the usual large- N asymptotic theory for maximum likelihood or GEEs
- Provides reliable inferences in problems where N is reasonably large and the magnitude of among-individual variation is not huge

My experience:

- Even without the integration, these are nasty computational problems, and good starting values for the parameters are required (may have to try several sets of starting values).
- The "first-order" approximation is too crude and should be avoided in general (although can be a good way to get reasonable starting values for other methods)
- The "first-order conditional" methods often work well, are numerically well-behaved, and yield reliable inferences

Inferential approaches

$$
\ell(\gamma, G)=\log \left\{\prod_{i=1}^{N} \int f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right) d \boldsymbol{b}_{i}\right\}
$$

Numerical approximation methods: Approximate the integrals using deterministic or stochastic numerical integration techniques (q-dimensional numerical integration) and maximize the log-likelihood

- Issue: For each iteration of the likelihood optimization algorithm, must approximate N q-dimensional integrals
- Infeasible until recently: Numerical integration embedded repeatedly in an optimization routine is computationally intensive
- Gets worse with larger q (the "curse of dimensionality")

Inferential approaches

Deterministic techniques:

- Normality of $\boldsymbol{b}_{i} \Longrightarrow$ Gauss-Hermite quadrature
- Quadrature rule: Approximate an integral by a suitable weighted average of the integrand evaluated at a q-dimensional grid of values \Longrightarrow accuracy increases with more grid points, but so does computational burden
- Adaptive Gaussian quadrature: "Center" and "scale" the grid about $\widehat{\boldsymbol{b}}_{i} \Longrightarrow$ can greatly reduce the number of grid points needed

Software: SAS proc nlmixed

- Adaptive Gaussian quadrature: The default
- Gaussian quadrature: method=gauss noad
- As before, proc nlmixed cannot handle dependence of $V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right)$ on $\boldsymbol{\theta}_{i}$ and thus on $\boldsymbol{\beta}, \boldsymbol{b}_{i}$

Inferential approaches

$$
\ell(\gamma, G)=\log \left\{\prod_{i=1}^{N} \int f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right) d \boldsymbol{b}_{i}\right\}
$$

Stochastic techniques:

- "Brute force" Monte Carlo integration: Represent integral for i by

$$
B^{-1} \sum_{b=1}^{B} f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}^{(b)} ; \gamma\right)
$$

$\boldsymbol{b}^{(b)}$ are draws from $N(\mathbf{0}, G)$ (at the current estimates of γ, G)

- Can require very large B for acceptable accuracy (inefficient)
- Importance sampling: Replace this by a suitably weighted version that is more efficient

Software: SAS proc nlmixed implements importance sampling (method=isamp)

Inferential approaches

My experience with SAS proc nlmixed:

- Good starting values are essential (may have to try many sets) starting values are required for all of $\boldsymbol{\beta}, G, \boldsymbol{\alpha}$
- Could obtain starting values from an analytical approximation method
- Practically speaking, quadrature is infeasible for $q>2$ almost always with the mechanism-based non-linear models in PK and other applications

Inferential approaches

Other methods: Maximize the log-likelihood via an EM algorithm

- For non-linear mixed models, the conditional expectation in the E-step is not available in a closed form
- Monte Carlo EM algorithm: Approximate the E-step by ordinary Monte Carlo integration
- Stochastic approximation EM algorithm: Approximate the E-step by Monte Carlo simulation and stochastic approximation
- Software?

Inferential approaches

Bayesian inference: Natural approach to hierarchical models

Big picture: In the Bayesian paradigm

- View $\boldsymbol{\beta}, \boldsymbol{\alpha}, G$, and $\boldsymbol{b}_{i}, i=1, \ldots, N$, as random parameters (on equal footing) with prior distributions (priors for $\boldsymbol{b}_{i}, i=1, \ldots, N$, are $N(\mathbf{0}, G))$
- Bayesian inference on $\boldsymbol{\beta}$ and G is based on their posterior distributions
- The posterior distributions involve high-dimensional integration and cannot be derived analytically ...
- ... but samples from the posterior distributions can be obtained via Markov chain Monte Carlo (MCMC)

Inferential approaches

Bayesian hierarchy:

- Stage 1 - Individual-level model: Assume normality

$$
\begin{aligned}
E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right) & =E\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\boldsymbol{m}_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right) \\
\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{b}_{i}\right) & =\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=V_{i}\left(\boldsymbol{X}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}, \boldsymbol{\alpha}\right)
\end{aligned}
$$

- Stage 2 - Population model: $\boldsymbol{\theta}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right), \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G)$
- Stage 3 - Hyperprior: $(\boldsymbol{\beta}, \boldsymbol{\alpha}, G) \sim f(\boldsymbol{\beta}, \boldsymbol{\alpha}, G)=f(\boldsymbol{\beta}) f(\boldsymbol{\alpha}) g(G)$
- Joint posterior density

$$
f(\gamma, G, \boldsymbol{b} \mid \boldsymbol{y}, \boldsymbol{x})=\frac{\prod_{i=1}^{N} f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right) f(\boldsymbol{\beta}, \boldsymbol{\alpha}, G)}{f(\boldsymbol{y} \mid \boldsymbol{x})}
$$

denominator is numerator integrated wrt $\left(\gamma, G, \boldsymbol{b}_{i}, i=1, \ldots, N\right)$

- E.g., posterior for $\boldsymbol{\beta}, f(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{x})$: Integrate out $\boldsymbol{\alpha}, G, \boldsymbol{b}_{i}, i=1, \ldots, N$

Inferential approaches

Estimator for β : Mode of posterior

- Uncertainty measured by spread of $f(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{x})$
- Similarly for $\boldsymbol{\alpha}, G$, and $\boldsymbol{b}_{i}, i=1, \ldots, N$

Implementation: By simulation via MCMC

- Samples from the full conditional distributions (eventually) behave like samples from the posterior distributions
- The mode and measures of uncertainty may be calculated empirically from these samples
- Issue: Sampling from some of the full conditionals is not entirely straightforward because of non-linearity of m in $\boldsymbol{\theta}_{i}$ and hence \boldsymbol{b}_{i}
- \Longrightarrow "All-purpose" software not available in general, but has been implemented for popular m in add-ons to WinBUGS (e.g., PKBugs)

Inferential approaches

Experience:

- With weak hyperpriors and "good" data, inferences are very similar to those based on maximum likelihood and first-order conditional methods
- Convergence of the chain must be monitored carefully; "false convergence" can happen
- Advantage of Bayesian framework: Natural mechanism to incorporate known constraints and prior scientific knowledge

Inferential approaches

Inference on individuals: Follows naturally from a Bayesian perspective

- Goal: "Estimate" \boldsymbol{b}_{i} or $\boldsymbol{\theta}_{i}$ for a randomly chosen individual i from the population
- "Borrowing strength": Individuals sharing common characteristics can enhance inference
- \Longrightarrow Natural "estimator" is the mode of the posterior $f\left(\boldsymbol{b}_{i} \mid \boldsymbol{y}, \boldsymbol{x}\right)$ or $f\left(\boldsymbol{\theta}_{i} \mid \boldsymbol{y}, \boldsymbol{x}\right)$
- Frequentist perspective: (γ, G) are fixed - relevant posterior is

$$
f\left(\boldsymbol{b}_{i} \mid \boldsymbol{y}_{i}, \boldsymbol{x}_{i} ; \gamma, G\right)=\frac{f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{b}_{i} ; \gamma\right) f\left(\boldsymbol{b}_{i} ; G\right)}{f_{i}\left(\boldsymbol{y}_{i} \mid \boldsymbol{x}_{i} ; \gamma, G\right)}
$$

\Longrightarrow substitute estimates for (γ, G)

- $\widehat{\boldsymbol{\theta}}_{i}=\boldsymbol{d}\left(\boldsymbol{A}_{i}, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{b}}_{i}\right)$
- "Empirical Bayes"

Inferential approaches

Selecting the population model d : The foregoing is predicated on a fixed $\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)$

- A key objective in many analyses (e.g., population PK) is to identify an appropriate $\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)$
- Must identify elements of \boldsymbol{A}_{i} to include in each component of $\boldsymbol{d}\left(\boldsymbol{A}_{i}, \boldsymbol{\beta}, \boldsymbol{b}_{i}\right)$ and the functional form of each component
- Likelihood inference: Use nested hypothesis tests or information criteria (AIC, BIC, etc)
- Challenging when \boldsymbol{A}_{i} is high-dimensional. . .
- ... Need a way of selecting among large number of variables and functional forms in each component (still an open problem...)

Inferential approaches

Selecting the population model d : Continued

- Graphical methods: Based on Bayes or empirical Bayes "estimates"
- Fit an initial population model with no covariates (elements of \boldsymbol{A}_{i} and obtain B/EB estimates $\widehat{\boldsymbol{b}}_{i}, i=1 \ldots, N$
- Plot components of $\widehat{\boldsymbol{b}}_{i}$ against elements of \boldsymbol{A}_{i}, look for relationships
- Postulate and fit an updated population model \boldsymbol{d} incorporating relationships and obtain updated B / EB estimates $\widehat{\boldsymbol{b}}_{i}$ and re-plot
- If model is adequate, plots should show haphazard scatter; otherwise, repeat
- Issue 1: "Shrinkage" of B/EB estimates could obscure relationships (especially if \boldsymbol{b}_{i} really aren't normally distributed)
- Issue 2: "One-at-a-time" assessment of relationships could miss important features

Inferential approaches

Normality of \boldsymbol{b}_{i} : The assumption $\boldsymbol{b}_{i} \sim N(\mathbf{0}, G)$ is standard in mixed-effects model analysis; however

- Is it always realistic?
- Unmeasured binary among-individual covariate systematically associated with $\boldsymbol{\theta}_{i} \Longrightarrow \boldsymbol{b}_{i}$ has bimodal distribution
- Or a normal distribution may just not be the best model! Heavy tails, skewness. . .)
- Consequences?

Relaxing the normality assumption: Represent the density of \boldsymbol{b}_{i} by a flexible form

- Estimate the density along with the model parameters
- \Longrightarrow Insight into possible omitted covariates

Implementation and examples

Example 1: A basic analysis - argatroban study

- Intensive $P K$ study, $N=37$ subjects assigned to different intravenous infusion rates D_{i} for $t_{\text {inf }}=240 \mathrm{~min}$
- $t_{i j}=30,60,90,115,160,200,240,245,250,260,275,295,320,360 \mathrm{~min}$ ($n_{i}=14$)
- One compartment model

$$
\begin{gathered}
m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\frac{D_{i}}{e^{C l_{i}^{*}}}\left[\exp \left\{-\frac{e^{C l_{i}^{*}}}{e^{V_{i}^{*}}}\left(t-t_{\text {inf }}\right)_{+}\right\}-\exp \left(-\frac{e^{C l_{i}^{*}}}{e^{V_{i}^{*}}} t\right)\right] \\
\boldsymbol{\theta}_{i}=\left(C l_{i}^{*}, V_{i}^{*}\right)^{\prime}, \quad \boldsymbol{U}_{i}=\left(D_{i}, t_{\text {inf }}\right) \\
x_{+}=0 \text { if } x \leq 0 \text { and } x_{+}=x \text { if } x>0
\end{gathered}
$$

- Parameterized in terms of $C l_{i}^{*}=\log \left(C l_{i}\right), V_{i}^{*}=\log \left(V_{i}\right)$ (population distributions of PK parameters likely skewed)
- No among-individual covariates \boldsymbol{A}_{i}

Applications

Profiles for subjects receiving 1.0 and $4.5 \mu \mathrm{~g} / \mathrm{kg}-\mathrm{min}$:

Infusion rate $1.0 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$

Infustion rate $4.5 \mu \mathrm{~g} / \mathrm{kg} / \mathrm{min}$

Implementation and examples

Non-linear mixed model:

- Stage 1 - Individual-level model: $Y_{i j}$ normal with

$$
E\left(Y_{i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)
$$

$\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{A}_{i}\right)=V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=\sigma_{e}^{2} \operatorname{diag}\left\{m^{2 \zeta}\left(t_{i 1}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right), \ldots, m^{2 \zeta}\left(t_{i n_{i}}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)\right\}$
\Longrightarrow negligible autocorrelation, measurement error dominates

- Stage 2 - Population model

$$
\boldsymbol{\theta}_{i}=\boldsymbol{\beta}+\boldsymbol{b}_{i}, \quad \boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}\right)^{\prime}, \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G)
$$

$\Longrightarrow \beta_{1}, \beta_{2}$ represent population means of log clearance, volume; equivalently, $\exp \left(\beta_{1}\right), \exp \left(\beta_{2}\right)$ are population medians
$\Longrightarrow \sqrt{G_{11}}, \sqrt{G_{22}} \approx$ coefficients of variation of clearance, volume

Implementation and examples

Implementation: Using

- Individual estimates $\widehat{\boldsymbol{\theta}}_{i}$ found using "pooled" generalized least squares including estimation of ζ (customized R code) followed by fitting the "linear mixed model" (SAS proc mixed)
- First-order method via version 8.01 of SAS macro nlinmix with expand=zero - fix $\zeta=0.22$ (estimate from above)
- First-order conditional method via version 8.01 of SAS macro nlinmix with expand=eblup $-\operatorname{fix} \zeta=0.22$
- First-order conditional method via R function nlme (estimate ζ)
- Maximum likelihood via SAS proc nlmixed with adaptive Gaussian quadrature - does not support non-constant intra-individual variance \Longrightarrow "transform-both-sides" with $\delta=1-\zeta \approx 0.75$

$$
\left(Y_{i j}^{\delta}-1\right) / \delta=\left[\left\{m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)\right\}^{\delta}-1\right] / \delta+e_{i j}, \quad \boldsymbol{e}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{b}_{i} \sim N\left(\mathbf{0}, \sigma_{e}^{2} I_{n_{i}}\right)
$$

Implementation and examples

Abridged code: Full code at website for Longitudinal Data Analysis http://www.biostat.harvard.edu/~fitzmaur/lda/

First-order method: SAS nlinmix with expand=zero
First-order conditional method: SAS nlinmix with expand=blup

```
%inc 'nlmm801.sas' / nosource; * nlinmix macro;
data arg; infile 'argconc.dat';
    input obsno indiv dose time conc;
    tinf=240;
    t1=1; if time>tinf then t1=0; t2=tinf*(1-t1)+t1*time;
run;
```


Implementation and examples

```
%nlinmix(data=arg,
    model=%str (
        logcl=beta1+b1; logv=beta2+b2; cl=exp(logcl); v=exp(logv);
        predv=(dose/cl)*(1-exp (-cl*t2/v))*exp (-cl*(1-t1)*(time-tinf)/v);
    ),
    derivs=%str( wt=1/predv**(2*0.22); ),
    parms=%str (beta1=-6.0 beta2=-2.0),
    stmts=%str(
        class indiv;
        model pseudo_conc = d_beta1 d_beta2 / noint notest solution;
        random d_b1 d_b2 / subject=indiv type=un solution;
        weight wt;
        ),
    expand=zero, * or expand=eblup,
    procopt=%str(maxiter=500 method=ml)
run;
```


Implementation and examples

Abridged output: First-order method
Covariance Parameter Estimates
Cov Parm Subject Estimate

UN $(1,1)$	indiv	0.1578
UN $(2,1)$	indiv	-0.00308
UN $(2,2)$	indiv	0.01676
Residual		699.80

Solution for Fixed Effects
Standard

Effect	Estimate	Error	DF	t Value	Pr $>\|t\|$
d_beta1	-5.4889	0.06629	401	-82.80	$<.0001$
d_beta2	-1.8277	0.03429	401	-53.30	$<.0001$

Implementation and examples

Abridged output: First-order conditional method
Covariance Parameter Estimates
Cov Parm Subject Estimate

UN $(1,1)$	indiv	0.1378
UN $(2,1)$	indiv	0.005669
UN $(2,2)$	indiv	0.004761
Residual		549.08

Solution for Fixed Effects
Standard

Effect	Estimate	Error	DF	t Value	Pr $>\|t\|$
d_beta1	-5.4325	0.06212	401	-87.46	$<.0001$
d_beta2	-1.9256	0.02527	401	-76.19	$<.0001$

Implementation and examples

First-order conditional method: R function nlme

```
library(nlme) # access nlme()
thedat <- read.table("argconc.dat",col.names=c('obsno','indiv',
    'dose','time','conc'))
meanfunc <- function(x,b1,b2,dose){
    tinf <- 240; cl <- exp(logcl); v <- exp(logv)
    t1 <- x<=tinf; t2 <- tinf*(1-t1)+t1*x;
    f1 <- (dose/cl)*(1-exp(-cl*t2/v))*exp(-cl*(1-t1)*(x-tinf)/v)
    f1
}
```


Implementation and examples

```
arg.mlfit <- nlme(conc ~ meanfunc(time,logcl,logv,dose),
    fixed = list(logcl ~ 1,logv ~1),
    random = list(logcl ~ 1,logv ~ 1),
    groups = ~ indiv, data = thedat,
    start = list(fixed = c(-6.0,-2.0)),
    method="ML", verbose=T, weights=varPower(0.5))
Abridged output:
Nonlinear mixed-effects model fit by maximum likelihood
    AIC BIC logLik
    5738.429 5767.572 -2862.214
Random effects: Formula: list(b1 ~ 1, b2 ~ 1)
    Level: indiv
    Structure: General positive-definite, Log-Cholesky parametrization
    StdDev Corr
b1 0.37168333 b1
b2 0.06753254 0.268 Residual 20.42295300
```


Implementation and examples

```
Variance function:
    Structure: Power of variance covariate
    Formula: ~fitted(.)
    Parameter estimates:
        power
0.2432619
Fixed effects: list(b1 ~ 1, b2 ~ 1)
        Value Std.Error DF t-value p-value
b1 -5.432546 0.06230325 437-87.19522 0
b2 -1.917993 0.02513039 437 -76.32165 0
    Correlation:
        b1
b2 0.156
Number of Observations: 475
Number of Groups: 37
Estimate of sigma 20.42295
```


Implementation and examples

Maximum likelihood: SAS proc nlmixed
data arg; set arg; conctrans = conc**0.75; run;
proc nlmixed data=arg;
parms beta1=-6.0 beta2=-2.0 s2b1=0.14 cb12=0.006 s2b2=0.006 s2=23.0;
logcl=beta1+b1;
logv=beta2+b2;
cl=exp(logcl);
$\mathrm{v}=\exp$ (logv);
pred=((dose/cl)*(1-exp(-cl*t2/v))
$* \exp (-c l *(1-t 1) *($ time-tinf)/v))$* * 0.75 ;$
model conctrans ~ normal(pred,s2);
random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=indiv;
run;

Implementation and examples

Abridged output:

Fit Statistics

-2 Log Likelihood	4007.8
AIC (smaller is better)	4019.8

Parameter Estimates

Parameter	Standard				$\operatorname{Pr}>\|\mathrm{t}\|$
	Estimate	Error	DF	t Value	
beta1	-5.4237	0.06277	35	-86.40	$<.0001$
beta2	-1.9238	0.02972	35	-64.73	$<.0001$
s2b1	0.1411	0.03389	35	4.16	0.0002
cb12	0.006562	0.01020	35	0.64	0.5242
s2b2	0.006010	0.006141	35	0.98	0.3345
s2	192.72	13.6128	35	14.16	<. 0001

Implementation and examples

Method	β_{1}	β_{2}	σ_{e}	ζ	G_{11}	G_{12}	G_{22}
Indiv. est.	-5.433	-1.927	23.47	0.22	0.137	6.06	6.17
	(0.062)	(0.026)					
First-order	-5.490	-1.828	26.45	-	0.158	-3.08	16.76
nlinmix	(0.066)	(0.034)					
First-order cond.	-5.432	-1.926	23.43	-	0.138	5.67	4.76
nlinmix	(0.062)	(0.026)					
First-order cond.	-5.433	-1.918	20.42	0.24	0.138	6.73	4.56
nlme	(0.063)	(0.025)					
ML	-5.424	-1.924	13.88	-	0.141	6.56	6.01
nlmixed	(0.063)	(0.030)					

Values for G_{12}, G_{22} are multiplied by 10^{3}

Implementation and examples

Interpretation: Concentrations measured in $\mathrm{ng} / \mathrm{ml}=1000 \mu \mathrm{~g} / \mathrm{ml}$

- Median argatroban clearance $\approx 4.4 \mu \mathrm{~g} / \mathrm{ml} / \mathrm{kg}$

$$
(\approx \exp (-5.43) \times 1000)
$$

- Median argatroban volume $\approx 145.1 \mathrm{ml} / \mathrm{kg} \Longrightarrow \approx 10$ liters for a 70 kg subject
- Assuming $C l_{i}, V_{i}$ approximately lognormal
$-G_{11} \approx \sqrt{0.14} \times 100 \approx 37 \%$ coefficient of variation for clearance
$-G_{22} \Longrightarrow 8 \% \mathrm{CV}$ for volume

Implementation and examples

Individual inference: Individual estimate (dashed) and empirical Bayes estimate (solid)

Implementation and examples

Example 2: A simple population PK study analysis: phenobarbital

- World-famous example
- $N=59$ preterm infants treated with phenobarbital for seizures
- $n_{i}=1$ to 6 concentration measurements per infant, total of 155
- Among-infant covariates $\left(\boldsymbol{A}_{i}\right)$: Birth weight $w_{i}(\mathrm{~kg}), 5-m i n u t e$ Apgar score $\delta_{i}=\mathrm{I}[$ Apgar $<5]$
- Multiple intravenous doses: $\boldsymbol{U}_{i}=\left(s_{i \ell}, D_{i \ell}\right), \ell=1, \ldots, d_{i}$
- One-compartment model (principle of superposition)

$$
m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\sum_{\ell: s_{i \ell}<t} \frac{D_{i \ell}}{V_{i}} \exp \left\{-\frac{C l_{i}}{V_{i}}\left(t-s_{i \ell}\right)\right\}
$$

- Objectives: Characterize PK and its variation - Mean/median $C l_{i}$, V_{i} ? Systematic associations with among-infant covariates? Extent of unexplained variation?

Implementation and examples

Dosing history and concentrations for one infant:

Implementation and examples

Non-linear mixed model:

- Stage 1 - Individual-level model

$$
E\left(Y_{i j} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=m\left(t_{i j}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right), \quad \operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{A}_{i}\right)=V_{i}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}\right)=\sigma_{e}^{2} I_{n_{i}}
$$

\Longrightarrow negligible autocorrelation, measurement error dominates and has constant variance

- Stage 2 - Population model
- Without among-infant covariates \boldsymbol{A}_{i}

$$
\log C l_{i}=\beta_{1}+b_{i 1}, \quad \log V_{i}=\beta_{2}+b_{i 2}
$$

- With among-infant covariates \boldsymbol{A}_{i}

$$
\log C l_{i}=\beta_{1}++\beta_{3} w_{i}+b_{i 1}, \quad \log V_{i}=\beta_{2}++\beta_{4} w_{i}+\beta_{5} \delta_{i}+b_{i 2}
$$

Implementation and examples

Empirical Bayes estimates vs. covariates: Fit without

Implementation and examples

Empirical Bayes estimates vs. covariates: Fit with

Implementation and examples

Relaxing the normality assumption on b_{i} : Represent the density of \boldsymbol{b}_{i} by a flexible form, fit by maximum likelihood

(c)

(d)

Extensions

Multivariate response: More than one type of response measured longitudinally on each individual

- Objectives: Understand the relationships between the response trajectories and the processes underlying them
- Key example: pharmacokinetic/pharmacodynamic (PK/PD) analysis
- PD - "What the drug does to the body"

Example: Argatroban study

- In addition to drug concentrations, samples at 5-9 time points from 0 to 540 min (not necessarily the same as for concentrations) \Longrightarrow measure activated partial thromboplastin time (aPTT)
- aPTT is the pharmacodynamic response
- Goal: Elucidate the relationships between argatroban concentration and aPTT and among underlying PK and PD processes

Extensions

Required: A joint model for PK and PD

- Data:
- $Y_{i j}^{P K}$ at times $t_{i j}^{P K}$ (PK concentrations)
$-Y_{i j}^{P D}$ at times $t_{i j}^{P D}$ ($P D$ aPTT responses)
- One compartment model for PK

$$
\begin{gathered}
m^{P K}\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right)=\frac{D_{i}}{e^{C l_{i}^{*}}}\left[\exp \left\{\frac{e^{C l_{i}^{*}}}{e^{V_{i}^{*}}}\left(t-t_{\text {inf }}\right)_{+}\right\}-\exp \left(-\frac{e^{C l_{i}^{*}}}{e^{V_{i}^{*}}} t\right)\right] \\
\boldsymbol{\theta}_{i}^{P K}=\left(C l_{i}^{*}, V_{i}^{*}\right)^{\prime}, \quad \boldsymbol{U}_{i}=\left(D_{i}, t_{\mathrm{inf}}\right)
\end{gathered}
$$

- PK analysis \Longrightarrow can obtain individual estimates $\widehat{\boldsymbol{\theta}}_{i}^{P K}$ and predicted concentrations $m\left(t_{i j}^{P D}, \widehat{\boldsymbol{\theta}}_{i}^{P K}\right)$
- \Longrightarrow plot $Y_{i j}^{P D}$ vs. $m\left(t_{i j}^{P D}, \widehat{\boldsymbol{\theta}}_{i}^{P K}\right)$

Extensions

Concentration-PD response relationship:

Extensions

Suggests: Empirical model for concentration-aPTT response relationship - sigmoidal " $E_{\text {max }}$ model"

$$
\begin{gathered}
\text { aPTT }=m^{P D}\left(\text { conc, } \boldsymbol{\theta}^{P D}\right)=E_{0}+\frac{E_{\max }-E_{0}}{1+E C_{50} / \text { conc }} \\
\boldsymbol{\theta}^{P D}=\left(E_{0}, E_{\max }, E C_{50}\right)^{\prime}
\end{gathered}
$$

Result: Assuming measurement error dominates realization variation, so "true" PK concentration for i at $t \approx m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right)$

- Stage 1 - Individual-level model

$$
\begin{aligned}
Y_{i j}^{P K} & =m^{P K}\left(t_{i j}^{P K}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right)+e_{i j}^{P K} \\
Y_{i j}^{P D} & =m^{P D}\left\{m^{P K}\left(t_{i j}^{P D}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right), \boldsymbol{\theta}_{i}^{P D}\right\}+e_{i j}^{P D}
\end{aligned}
$$

- $e_{i j}^{P K}, e_{i j}^{P D}$ mutually independent (primarily measurement error)

Extensions

Full model: Combined responses $\boldsymbol{Y}_{i}=\left(\boldsymbol{Y}_{i}^{P K^{\prime}}, \boldsymbol{Y}_{i}^{P D^{\prime}}\right)^{\prime}$

$$
\boldsymbol{\theta}_{i}=\left(\boldsymbol{\theta}_{i}^{P K^{\prime}}, \boldsymbol{\theta}_{i}^{P D^{\prime}}\right)^{\prime}=\left(C l_{i}^{*}, V_{i}^{*}, E_{0 i}, E_{\mathrm{max}, i}, E C_{50 i}\right)^{\prime}
$$

- Stage 1 - Individual-level model

$$
\begin{gathered}
E\left(Y_{i j}^{P K} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=m^{P K}\left(t_{i j}^{P K}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right) \\
E\left(Y_{i j}^{P D} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=m^{P D}\left\{m^{P K}\left(t_{i j}^{P D}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right), \boldsymbol{\theta}_{i}^{P D}\right\}
\end{gathered}
$$

$\operatorname{Cov}\left(\boldsymbol{Y}_{i} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)=\operatorname{block} \operatorname{diag}\left\{V_{i}^{P K}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}^{P K}\right), V_{i}^{P D}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}^{P D}\right)\right\}$
$V_{i}^{P K}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}^{P K}\right)=\sigma_{e, P K}^{2} \operatorname{diag}\left[\ldots,\left\{m^{P K}\left(t_{i j}^{P K}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right)\right\}^{2 \zeta^{P K}}, \ldots\right]$
$V_{i}^{P D}\left(\boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}, \boldsymbol{\alpha}^{P D}\right)=\sigma_{e, P D}^{2} \operatorname{diag}\left(\ldots,\left[m^{P D}\left\{m^{P K}\left(t_{i j}^{P D}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{P K}\right), \boldsymbol{\theta}_{i}^{P D}\right\}\right]^{2 \varsigma^{P D}}, \ldots\right)$

- Stage 2 - Population model

$$
\boldsymbol{\theta}_{i}=\boldsymbol{\beta}+\boldsymbol{b}_{i}, \quad \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{5}\right)^{\prime}, \quad \boldsymbol{b}_{i} \sim N(\mathbf{0}, G)
$$

Extensions

Time-dependent among-individual covariates: Among-individual covariates change over time within an individual

- In principle, one could write $\boldsymbol{\theta}_{i j}$ for each $t_{i j}$; however...
- Key issue: Does this make scientific sense?
- PK: Do pharmacokinetic processes vary within an individual?

Example: Quinidine study

- Creatinine clearance, α_{1}-acid glycoprotein concentration, etc, change over dosing intervals
- How to incorporate dependence of $C l_{i}, V_{i}$ on α_{1}-acid glycoprotein concentration?

Extensions

Data for a representative subject:

time $($ hours $)$	conc. $(\mathrm{mg} / \mathrm{L})$	dose (mg)	age $($ years $)$	weight (kg)	creat. $(\mathrm{ml} / \mathrm{min})$	glyco. $(\mathrm{mg} / \mathrm{dl})$
0.00	-	166	75	108	>50	69
6.00	-	166	75	108	>50	69
11.00	-	166	75	108	>50	69
17.00	-	166	75	108	>50	69
23.00	-	166	75	108	>50	69
27.67	0.7	-	75	108	>50	69
29.00	-	166	75	108	>50	94
35.00	-	166	75	108	>50	94
41.00	-	166	75	108	>50	94
47.00	-	166	75	108	>50	94
53.00	-	166	75	108	>50	94
65.00	-	166	75	108	>50	94
71.00	-	166	75	108	>50	94
77.00	0.4	-	75	108	>50	94
161.00	-	166	75	108	>50	88
168.75	0.6	-	75	108	>50	88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF

Extensions

Population model: Standard approach in PK

- For subject i : α_{1}-acid glycoprotein concentration likely measured intermittently at times $0,29,161$ hours and assumed constant over the intervals $(0,29),(29,77),(161, \cdot)$ hours
- For intervals $I_{k}, k=1, \ldots, a(a=3$ here $), \boldsymbol{A}_{i k}=$ among-individual covariates for $t_{i j} \in I_{k} \Longrightarrow$ e.g., linear model

$$
\boldsymbol{\theta}_{i j}=\boldsymbol{A}_{i k} \boldsymbol{\beta}+\boldsymbol{b}_{i}
$$

- This population model assumes "within subject inter-interval variation" entirely "explained" by changes in covariate values
- Alternatively: Nested random effects

$$
\boldsymbol{\theta}_{i j}=\boldsymbol{A}_{i k} \boldsymbol{\beta}+\boldsymbol{b}_{i}+\boldsymbol{b}_{i k}, \quad \boldsymbol{b}_{i}, \boldsymbol{b}_{i k} \text { independent }
$$

Extensions

Multi-level models: More generally

- Nesting: E.g., responses $Y_{i k j}, j=1, \ldots, n_{i k}$, on several trees $\left(k=1, \ldots, v_{i}\right)$ within each of several plots $(i=1, \ldots, N)$

$$
\boldsymbol{\theta}_{i k}=\boldsymbol{A}_{i k} \boldsymbol{\beta}+\boldsymbol{b}_{i}+\boldsymbol{b}_{i k}, \quad \boldsymbol{b}_{i}, \boldsymbol{b}_{i k} \text { independent }
$$

Missing/mismeasured covariates: $\boldsymbol{A}_{i}, \boldsymbol{U}_{i}, t_{i j}$
Censored response: E.g., due to an assay quantification limit
Semiparametric models: Allow $m\left(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\right)$ to depend on an unspecified function $g\left(t, \boldsymbol{\theta}_{i}\right)$

- Flexibility, model misspecification

Clinical trial simulation: "Virtual" subjects simulated from a non-linear mixed-effects model for PK/PD/disease progression linked to a clinical end-point

Discussion

Summary:

- The non-linear mixed-effects model is now a standard statistical framework in many areas of application
- Is appropriate when scientific interest focuses on within-individual mechanisms/processes that can be represented by parameters in a non-linear (often theoretical) model for individual time course
- Free and commercial software is available, but implementation is still complicated
- Specification of models and assumptions, particularly the population model, is somewhat an art-form
- Current challenge: High-dimensional \boldsymbol{A}_{i} (e.g., genomic information)
- Still plenty of methodological research to do

Discussion

See the references on slide 3 for an extensive bibliography

