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Introduction

Common situation in the biosciences:

e A continuous response evolves over time (or other condition) within
individuals from a population of interest

e Scientific interest focuses on features or mechanisms that underlie
individual time trajectories of the response and how these vary
across the population

e A theoretical or empirical model for such individual profiles, typically
non-linear in parameters that may be interpreted as representing
such features or mechanisms, is available

e Repeated measurements over time are available on each individual in
a sample drawn from the population

e [nference on the scientific questions of interest is to be made in the
context of the model and its parameters
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Introduction

Non-linear mixed-effects model:
e Also known as the hierarchical non-linear model
e A formal statistical framework for this situation
e Much statistical methodological research in the early 1990s

e Now widely accepted and used, with applications routinely reported
and commercial and free software available

e Extensions and methodological innovations are still ongoing

Objectives of this workshop:

e Provide an introduction to the formulation, utility, and
implementation of non-linear mixed models

e Focus on applications in pharmaceutical and health sciences research
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Applications

Pharmacokinetics (PK): “What the body does to the drug"
e One of the most important application areas

e The area that inspired much of the methodological development for
non-linear mixed-effects models

e Broad goal: Understand and characterize intra-subject processes of
drug absorption, distribution, metabolism and excretion
(elimination’) governing achieved drug concentrations

e ...and how these processes vary across subjects

e Critical for developing dosing strategies

An outstanding overview: “Pharmacokinetics and
pharmacodynamics,” by D.M. Giltinan, in Encyclopedia of Biostatistics,
2nd edition

. Non-Clinical Statistics
Conference

2008 w* 6 NC STATE UNIVERSITY



Applications

PK studies in humans: Two types

e “Intensive studies”
— Small number of subjects (often healthy volunteers)
— Frequent samples over time, often following single dose
— Usually early in drug development
— Useful for gaining initial information on “typical” PK behavior in

humans and for identifying an appropriate PK model. ..

e Preclinical PK studies in animals are generally intensive studies
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Applications

PK studies in humans: Two types

e “Population studies”
— Large number of subjects (heterogeneous patients)

— Often in later stages of drug development or after a drug is in
routine use

— Haphazard samples over time, multiple dosing intervals
— Extensive demographical and physiological characteristics

— Useful for understanding associations between patient
characteristics and PK behavior —> tailored dosing
recommendations
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Applications

Theophylline

study: 12 subjects, same oral dose (mg/kg)

12

10

Theophylline Concentration (mg/L)
6
|

Time (hours)
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Applications

Features:
e Intensive study
e Similarly shaped concentration-time profiles across subjects
e ...but peak, rise, decay vary

e Attributable to inter-subject variation in underlying PK behavior
(absorption, distribution, elimination)

Standard: Represent the body by a simple system of compartments

e Gross simplification but extraordinarily useful. ..
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Applications

One-compartment model with first-order absorption, elimination:

oral dose D > A(t) g
kq e
A
dd—it) = koA.(t) — k.A(t), A(0)=0
A,
Pall) — kA, 4,(0) = FA(®0)

F = bioavailability, A,(t) = amount at absorption site

A(t koDF
Concentration at t: m(t) = % = Vh, — ){exp(—ket) — exp(—kqt)},

ke =Cl/V, V = "volume" of compartment, Cl = clearance
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Applications

One-compartment model for theophylline:

e Single “blood compartment” with fractional rates of absorption k,
and elimination k.

e Deterministic mathematical model

e Individual PK behavior characterized by PK parameters

AN

0 = (k,,V,Cl)

By-product:
e The PK model assumes PK processes are dose-independent

e — Knowledge of the values of 6 = (ko, V,Cl)" allows simulation of
concentrations achieved at any time ¢ under different doses

e Can be used to develop dosing regimens
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Applications

Objectives of analysis:

e Estimate “typical” values of @ = (k,,V,Cl)" and how they vary in
the population of subjects based on the longitudinal concentration

data from the sample of 12 subjects

e — Must incorporate the (theoretical) PK model in an appropriate
statistical model (somehow. . .)
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Applications

Argatroban study: Another intensive study
e Administered by intravenous infusion for 4 hours (240 min)
e N = 37 subjects assigned to different constant infusion rates

e One-compartment model with constant intravenous infusion rate
D (ug/kg/min) for duration tj,s = 240 min

m(t) = % [exp {—%(t — tinf)+} — exp (—%t)] , 0= (CLVY
rr=0ifx<0andxy =xif x >0

Objectives of analysis:

e Estimate “typical” values of @ = (C1,V)" and how they vary in the
population of subjects

e Understand relationship between achieved concentrations and a
clinical or other response (pharmacodynamics; more later. .. )

a
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Applications

Profiles for 4 subjects receiving 4.5 ug/kg-min:

Argatroban Concentration (ng/ml)
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Applications

Quinidine population study: N = 136 patients undergoing treatment
with oral quinidine for atrial fibrillation or arrhythmia

e Demographical /physiological characteristics: Age, weight, height,
ethnicity /race, smoking status, ethanol abuse, congestive heart
failure, creatinine clearance, a;-acid glycoprotein concentration, ...

e Samples taken over multiple dosing intervals —
(dose time, amount) = (sy, Dy) for the ¢th dose interval

e Standard assumption: “Principle of superposition” — multiple

doses are “additive”

e One compartment model gives expression for concentration

at time t¢. ..
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Applications

For a subject not yet at a steady state:

Au(se) = Aa(se—1)exp{—Fkq(se —se—1)} + Dy,
kaq
V(ka — ke)

X [exp{—ke(Sg —Sp—1)} —exp{—kq(se — Sg_l)}]

m(sy) m(sp—1)exp{—Fke(s¢e — sp—1)} + Aa(sr-1)

Kq
Viky — ke)

x [exp{—ke(t — 1)} — exp{—ka(t — Sg)}}, se <t < S

m(t) = m(sp)exp{—ke(t —s¢)} + Au(se)

ke = Cl)V, 0= (k,,V,Cl)

Objective of analysis: Characterize typical values of and variation in
0 = (ko,V,Cl)" across the population and elucidate systematic
associations between @ and patient characteristics
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Applications

Data for a representative subject:

time conc. dose age weight creat. glyco.
(hours)  (mg/L) (mg) (vears)  (kg)  (ml/min) (mg/dl)
0.00 - 166 75 108 > 50 69
6.00 - 166 75 108 > 50 69
11.00 - 166 75 108 > 50 69
17.00 - 166 75 108 > 50 69
23.00 - 166 75 108 > 50 69
27.67 0.7 — 75 108 > 50 69
29.00 - 166 75 108 > 50 04
35.00 - 166 75 108 > 50 04
41.00 - 166 75 108 > 50 04
47.00 - 166 75 108 > 50 04
53.00 - 166 75 108 > 50 04
65.00 - 166 75 108 > 50 04
71.00 - 166 75 108 > 50 04
77.00 0.4 — 75 108 > 50 04
161.00 - 166 75 108 > 50 88
168.75 0.6 - 75 108 > 50 88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF
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Applications

Toxicokinetics: Physiologically-based pharmacokinetic (PBPK) models
e PK of environmental, chemical agents; studies often in animals
e N animals exposed, repeated concentrations over time on each

e More “realistic” representation of the body (e.g., organ, tissue
compartments)

e System of differential equations cannot be solved analytically

e [ots of PK parameters, some measurable, some unknown:
Compartment volumes V', partition coefficients P, flow rates F,
metabolic parameters Vi, K, etc

Objectives of analysis:

e Characterize in particular metabolic mechanisms (Viax, Kp) and
how these vary in the population

e Understand relationship between metabolic processes and toxicities
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Applications
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Applications

HIV dynamics: Human immunodeficiency virus (HIV), attacks the

Immune system

e Broad goal: Characterize mechanisms underlying the interaction
between HIV and the immune system over time governing disease
progression and the effects of anti-retroviral treatments (ART)

e Typical study: N subjects, repeated measurements on viral load
(virologic status), CD4+ T cell count (immunologic status) over

time (possibly on/off ART)

e Compartmental representation of mechanisms taking place within an
infected subject

e System of (deterministic) nonlinear ordinary differential equations,
— viral load, CD4+ T cell count, etc, at any time
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Applications

Simple model for within-subject HIV dynamics:
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Applications

Differential equations:

Tn = M—diTi — {1 —aUt)} e ViTh

Ty = Xo—doTo — {1 — feU(t) ko ViTs

Tr = {1 —aUt)Y1ViTy — 6T — moET

T; = {1— faUt) YkoViTy — 6T5 — moETS

Vi = {1 —eU)MNONpS(TF +T%) — Vi

{1 — U} 10°k TV — {1 — fa U(t)}p2102kaTo Vs

Vr = U103 NpS(Ty +T5) — eV

B o— an+ bp(IT +13) o de(Iy +713) B §nE

(T7 +T5) + Ky (T +T5) + Ky
e 0 =(\,dy,€e1,k1,...) plus initial conditions
e Observable: CD4 count = T1 4+ TY, viral load = Vi 4+ Ving
e U(t) =ART inputatt (0 <U(t) <1, 0=off, 1 =on)
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Applications
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Applications

Summary: Common themes

e A response (or responses) evolves over time (e.g., concentration
in PK)

e Interest focuses on underlying mechanisms/processes taking place
within an individual leading to response trajectories and how these
vary across the population

e A (usually deterministic) model is available representing
mechanisms explicitly by scientifically meaningful model parameters

e Mechanisms cannot be observed directly

e —> Inference on mechanisms must be based on repeated
measurements of the response over time on each of a sample of NV
individuals from the population
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Applications

Other application areas:

For definiteness: We will use PK as a running example

Stability testing
Agriculture
Forestry

Dairy science
Cancer dynamics

Many more . ..

a
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Model formulation

Non-linear mixed effects model: Embed the (deterministic) model
describing individual trajectories in a statistical model

e Formalizes knowledge and assumptions about variation in responses
and mechanisms within and among individuals

e Provides a framework for inference based on repeated measurement
data from N individuals

e For simplicity: Focus on univariate response (= drug concentration
in PK); some discussion of multivariate response at the end

Basic set-up: N individuals from a population of interest, : =1,..., N

e For individual 7, observe n; measurements of the response
Yii,Yio, ..., Yy, attimes t;1,t0,..., 8 n,

o l.e, for individual 7, YV;; at time ¢;;, 7 =1,...,n,

. Non-Clinical Statistics
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Model formulation

Within-individual conditions of observation: For individual ¢, U;

e Theophylline: U; = D; = oral dose for i at time 0 (mg/kg)

Argatroban: U; = (D;, tins) = infusion rate and duration for i

Quinidine: For subject 7 observed over d; dosing intervals, U; has
elements (s;¢, Dig)', £ =1,....,d;

HIV dynamics: U; is continuous function U;(t) with subject i's

known treatment status at any time ¢

U, are “within-individual covariates” — needed to describe

response-time relationship at the individual level

a
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Model formulation

Individual characteristics: For individual 7, A;
e Age, weight, ethnicity, smoking status, etc. ..

e for now: Elements of A; do not change over observation period
(will discuss changing elements later)

e A, are "among-individual covariates” — relevant only to how
individuals differ but are not needed to describe response-time
relationship at individual level

Observed data: (Y, X.),i=1,...,N, assumed independent across i
® Yz — (Yila c e 7)/1'711-),

e X, = (U;, A)) = combined within- and among-individual
covariates (for brevity later)

Basic model: A two-stage hierarchy
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Model formulation

Stage 1 — Individual-level model:
Yij =m(ti;,U;,0;) +ei5, =1,...,n4, 6; (r x1)

e E.g., for theophylline (F = 1)

Kai D;
Vi(kai — CLi/ V)

m(t, Uz'; 92) = {exp(—Clit/Vi) — exp(—kait)}

H’i — (ka’ia ‘/;7 Cl’&), — ((91'17 8i27 9’i3)/7 r = 37 U’L — DZ
e Assume €ij = Y;'j — m(tij, U,, 91) satisfy E(eij | U,, 91) =0
— E(i/w | Ui, 91) — m(tij, Uz‘, Hz) for each ]

e Standard assumption: e;; and hence Y;; are conditionally normally
distributed (on U3, 6;)

e More shortly. ..
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Model formulation

Stage 2 — Population model:
97; :d(AZ,,B,bZ), 1= 1,...,N, (’I“ X 1)

e d is r-dimensional function describing relationship between 6; and
A; in terms of ...

e 3 (p x 1) fixed parameter (“fixed effects")
e b; (¢ x1) "random effects”

e Characterizes how elements of 8; vary across individual due to
— Systematic associations with A; (modeled via 3)

— "“Unexplained variation™ in the population (represented by b;)

e Usual assumptions:
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Model formulation

Stage 2 — Population model:
0, =d(A;,3,b;), i=1,....,N

Example: Quinidine, 8; = (kq;, V;, Cl;) (r = 3)

® Az = (wi,&,ai)’, w; = Weight, , A; = age,
d; = I(creatinine clearance > 50 ml/min)

® b; = (bi1,bi2,bi3) (¢=3), B=(51,...,87) (p=17)

ki = 0i1=di1(A;,B,b;) =exp(B1 + bi1),
Vi = 0i2=d2(A;,B,b;) =exp(Ba + Baw; + bi2),
Cli = 0;3=d3(A;,8,b;) = exp(fs + Bsw; + B6d; + Bra; + by3),

e Positivity of k,;, V;, Cl; enforced

e If b ~ N(0,G), ky;, Vs, Cl; are each lognormally distributed in the
population
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Model formulation

Stage 2 — Population model:

0, =d(A;,3,b;), i=1,....N

Example: Quinidine, continued, 8; = (kq;, Vi, Cl;) (r = 3)
e “Are elements of 0; fixed or random effects?”

e “Unexplained variation” in one component of 6@, “small” relative to
others — no associated random effect, e.g., r =3, ¢ = 2

kai = exp(B1 + bir)
Vi = exp(f2 + Bsw;) (all population variation due to weight)
Cli = exp(B3+ Bsw; + B6d; + Bra; + bi3)

e An approximation — usually biologically implausible; used for
parsimony, numerical stability
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Model formulation

Stage 2 — Population model:
0, =d(A;,3,b;), i=1,....N
e Allows non-linear (in 3 and b;) specifications for elements of 8;

e May be more appropriate than linear specifications (positivity
requirements, skewed distributions)

Some accounts: Restrict to linear specification
0; = A;,B+ B;b;
e A; (r x p) “design matrix" depending on elements of A;
e B, (r x q) typically Os and 1s (identity matrix if r = q)

e Mainly in the statistical literature
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Model formulation

Stage 2 — Linear population model:

0, = A3+ Bib;

Example: Quinidine, continued

ais Vi, CL)' gy = log(kas),
V* =log(V;), and Cl} =log(Cl;) (r = 3)

e Reparameterize in terms of 8; = (k

wi = B1+tbi,
Vi = B+ Baw; + bio,
Cl; = ps+ Bsw; + Bed; + PBra; + bis
1 00 0 O 0 O 1 0 0
Ai=[ 010 wp, 0 0 0 |, Bi=|[0 10
0O 01 0 w; 9; ay 0 0 1
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Model formulation

Within-individual considerations: Complete the Stage 1

individual-level model
e Assumptions on the distribution of Y; given U; and 6;
e Focus on a single individual © observed under conditions U ;

e Y, at times ¢;; viewed as intermittent observations on a

stochastic process
Yiit,U;) =m(t,U;,0;) 4+ e;i(t,U;)
F{e;(t,U;)|U;,0;} =0, E{Y;(t,U;)|U;,0;} =m(t,U,,0;) for all ¢
o Vi =Yi(ti;,Us), ei; = ei(ti;, Uy)

e “Deviation" process e;(t,U;) represents all sources of variation
acting within an individual causing a realization of Y;(¢,U;) to
deviate from the “smooth” trajectory m(t,U;, ;)

a
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Model formulation

Conceptualization:

Concentration
200 400 600 800 1000

0
|

I I I I I |
0 50 100 150 200 250 300 350
Time
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Model formulation

Conceptual interpretation:

e Solid line: m(t,U;, 0;) represents “inherent tendency” for i's
response to evolve over time; depends on i's “inherent
characteristics” 0;

e Dashed line: Actual realization of the response — fluctuates about
solid line because m(t,U;, 0;) is a simplification of complex truth

e Symbols: Actual, intermittent measurements of the dashed line —
deviate from the dashed line due to measurement error

Result: Two sources of intra-individual variation
e "'Realization deviation”
o Measurement error variation

e m(t,U;,8;) is the average of all possible realizations of measured
response trajectory that could be observed on i
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Model formulation

To formalize: e;(t,U;) = eri(t,U;) + eni(t,U;)
e Within-individual stochastic process
Yit,U;) =m(t,U;,0;) + eri(t,U;) + eri(t,U;)
FEler:(t,U;)|U;,0;} = E{en:(t,U;)|U;,0;} =0
o — Y, =Y(ti;,U;), eri(tij, U;) = er.ij, enmi(ti;, Ui) = enrij

Yii=m(tij,U;,0;) + er,ij + enm.ij

Ve

67;3'

/

/
€R,i — (GR,ﬂ, e 7€R,7Ln7;> y €M, = (€M,z'1, e 7€M,z'n¢)
e er(t,U;) = “realization deviation process"
e eni(t,U;) = “measurement error deviation process”

e Assumptions on er ;(t,U;) and epr;(t,U;) lead to a model for
Cov(e; |U;, 0;) and hence Cov(Y,; |U;,8;)

B NomClinical Swisics| 7 () )8 g2 39 NC STATE UNIVERSITY



Model formulation

Conceptualization:

Concentration
200 400 600 800 1000

0
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Model formulation

Realization deviation process:

e Natural to expect er ;(t,U;) and er ;(s,U;) at times ¢t and s to be
positively correlated, e.g.,

corr{er.i(t,U;),eri(s,U;)|U;,0;} = exp(—plt —s|), p>0

e Assume variation of realizations about m(t,U;, 8;) are of similar
magnitude over time and individuals, e.g.,

Var{er.:(t,U;)|U;,0;} = 0% > 0 (constant for all t)
e Or assume variation depends on m(t,U;, 8;), e.g.,

Var{er:(t,U;) |U;,0;} = on{m(t,U;,0,)}*", n >0
e Result: Assumptions imply a covariance model (n; X n;)

Cov(er,i|U)i,0;) = Vri(U;,0;,aR), ar= (ck,p) orar=(on,p,n)
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Model formulation

Conceptualization:
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Model formulation

Measurement error deviation process:

e Measuring devices commit haphazard errors —
corr{enri(t,U;),enri(s,U;) | U;,0;} =0 for all t > s

e Assume magnitude of errors is similar regardless of level, e.g.,
Var{enr:(t,U;) |U;,0;} = o3, > 0 (constant for all t)

e Or assume magnitude changes with level; often approximated under
assumption Var{eR,Z-(t, Uz) ‘ U,, HZ} << Var{eM,L-(t, Uz) | U,, 92}

Var{eM,i(t, Uz) | UZ', 91} = 0]2\4{m(t, Ui,Hi)}QC, C >0

e Result: Assumptions imply a covariance model (n; X n;)
(diagonal matrix )

Cov(en,i |U)i,0;) = Vari(U;, i, ar), an =0y or an = (03,C)’
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Model formulation

Combining:

e Standard assumption: er ;(t,U;) and ey ;(t,U;) are independent

COV(BZ' | UZ', 02) = Cov(eR,Z- | Uq;, 97,) + COV(GM,Z' | UZ', 01)
= V5i(U;,0i,ar)+ Vari(U;, 0, )
= Vi(U;,0;, )

o = (ag, &y)’

e This assumption may or may not be realistic

Practical considerations: Quite complex intra-individual covariance
models can result from faithful consideration of the situation. ..

e ...But may be difficult to implement
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Model formulation

Standard model simplifications: One or more might be adopted
o Negligible measurement error —>
Vi(U;,0;, ) = Vg (U, 0;, ag)
e The t;; may be at widely spaced intervals = autocorrelation
among er ;; negligible = V;(U;,0;, o) is diagonal

e Var{eri(t,U;)|U;,0;} << Var{en:(t,U;)|U;,0;} —

measurement error is dominant source

e Simplifications should be justifiable in the context at hand

Note: All of these considerations apply to any mixed-effects model
formulation, not just non-linear ones!
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Model formulation

2

Routine assumption: V;(U;,0;,a) = 021,,, o = 02

e Often made by “default” with little consideration of the
assumptions it implies!

e Assumes autocorrelation among eg ;; negligible

e Assumes constant variances, i.e., Var{er ;(t,U;) |U;,0;} = %
and Var{en ;(t,U;)|U;,0;} = 05 = 02 = 0% + 034

e |f measurement error is negligible —- a = ]2%

o If Var{eR,i(t, U;)|U;,0,} << Var{eMz( U;)|U;, 0.}

— 0e N O3
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Model formulation

Standard assumptions in PK:

e Sampling times are sufficiently far apart that autocorrelation among
er.i; negligible (not always justifiable!)

e Measurement error dominates realization error so that
Var(eR,ij ‘ U,, 91) << Var(eM,Z-j | U,, 0@)
(often reasonable)

e Measurement error variance depends on level, approximated by
Var(eM,ij | UZ', 91) = aﬂ{m(tij, UZ', 9@)}2C

so that V;(U;,0;, ) = Vi (U, 0;, ) is diagonal with these
elements (almost always the case)
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Model formulation

Distributional assumption:
e Specification for E(Y; |U;,0;) = m;(U;,0;),
m;i (Ui, 0;) = {m(ti1,U;,0;),...,m(tin,, Ui, 0;)}  (n; x 1)

e Specification for Cov(Y; |U;,0;) = V;(U;,0,;, o)

e Standard assumption: Distribution of Y; given U; and 0, is
multivariate normal with these moments

e Alternatively, model on the log scale = Y;; are conditionally (on
U; and 0;) lognormal

e [n what follows: Y;; denotes the response on the original or
transformed scale as appropriate
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Model formulation

Summary of the two-stage model: Recall X; = (U}, A)
e Substitute population model for 8; in individual-level model
e Stage 1 — Individual-level model:
EY;|X;,b;)) = FEY;|U;,0;,)=m;(U;,0;,)=m;(X;,3,b,),
Cov(Y;| X;,b;)) = Cov(Y,;|U;,0;,) =V, (U;,0;,ax) =V;(X;,3,b;, )
e Stage 2 — Population model:

e Standard assumptions:
— Y, given X; and b; multivariate normal (perhaps transformed)
— b; ~ N(0,G)

— All of these can be relaxed
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Model interpretation and inferential objectives

“Subject-specific’ model:

e Individual behavior is modeled explicitly at Stage 1, depending on
individual-specific parameters 8; that have scientifically meaningful
Interpretation

e Models for E(Y; |U;,0;) and 0;, and hence E(Y ;| X;,b;), are

specified . ..

e ...in contrast to a “population-averaged” model, where a model for
E(Y ;| X;) is specified directly (more on this momentarily. . .)

e This is consistent with the inferential objectives

e Interest is in “typical” values of 8; and how they vary in the

population. ..
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Model interpretation and inferential objectives

Main inferential objectives: May be formalized in terms of the model

e For a specific population model d, the fixed effect (3 characterizes
the mean or median (“typical”) value of 6; in the population
(perhaps for individuals with given value of A;)

e — Determining an appropriate population model d(A;, 3, b;) and
inference on elements of 3 in it is of central interest

e Variation of @, across individuals beyond that attributable to
systematic associations with among-individual covariates A; is
described by G (“unexplained variation™)

e — Inference on G is of interest (in particular, diagonal elements)
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Model interpretation and inferential objectives

Additional inferential objectives: In some contexts

e Inference on 6; and/or m(ty,U;, 8;) at some specific time t for
v =1,..., N or for future individuals is of interest

e Example: “Individualized” dosing in PK

e The model is a natural framework for “borrowing strength” across

similar individuals (more later)
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Model interpretation and inferential objectives

“Subject-specific”’ vs. “Population-averaged”:

e The non-linear mixed model is a “subject-specific” model —>
Interest is in “typical” values of individual-specific parameters
(mechanisms), 8;, and how they vary in the population

e A “population-averaged” model describes the “typical” response
pattern (averaged over individuals in the population), E(Y ;| X;),
and the overall variation in response patterns about it, Cov(Y; | X;)

e —> In a “population-averaged” model, individual-specific behavior is
not acknowledged; rather, it is “averaged out” in advance, i.e.,

B(Y;|X;) = /E(Y,L- | X,.b;) dFy(b;)

— E(Y ;| X;) is specified directly; a representation for
E(Y ;| X,,b;) is never specified
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Model interpretation and inferential objectives

“Subject-specific”’ vs. “Population-averaged”:

e “Population-averaged” model cannot incorporate theoretical
assumptions embedded in the model m(t,U;, 8;) for individual
behavior

e In fact, using m as a model for E(Y ;| X ;) makes no scientific
sense (although it may provide a reasonable empirical representation
of the “typical” response pattern) — impossible for

E(Y:| X)) = / mi(X1, B.b:) dFy(b;) — m(X, B)

e In the applications here, the response is of interest because it carries
information on the @;, but average response itself is of little or no
iImportance —> “population-averaged” model is not appropriate
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Model interpretation and inferential objectives

“Subject-specific’ model — “population-averaged”’” model:

BOYiIX) = [ mi(Xi.8.b) dR(b)

e F(Y;|X,;)is complicated function of 3 and G = 3 alone does
not describe the population average

o F{Vi(X;,3,b;,a)|X;} = average of realization/measurement
variation over population = diagonal only if autocorrelation of
within-individual realizations negligible

e Cov{im,;(X,;,3,b;)|X;} = population variation in “inherent
trajectories’ = non-diagonal in general

e — QOverall pattern of variation/covariation in the response is the
aggregate due to both sources

o | prefer "aggregate” covariance to “within-individual” covariance

a
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Inferential approaches

Reminder — summary of the two-stage model: X; = (U}, A})
e Stage 1 — Individual-level model:
E(Y;|X;,b;) = EY;|U;,0;) =m;(U;,0;) =m;(X,;,3,b;),
Cov(Y;| X;,b;)) = Cov(Y,;|U;,0;) =V;(U;,0;,ax) =V;(X,;,3,b;, )
e Stage 2 — Population model:

e Standard assumptions:

— Y, given X; and b; multivariate normal (perhaps transformed )
— probability density function f;(y, | x;, b;; 3, )

— b; ~ N(0,G) = density f(b;; G)

e Observed data: {(Y;,X;),i=1,....,N} = (Y, X),
(Y ;, X ;) assumed independent across i
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Inferential approaches

Natural basis for inference on 3, G: Maximum likelihood

e Joint density of Y given X (by independence)
N
fyle; v, G) =] fily; |z 7. G), v=(8,a')
i=1

o fi(yibilzis v, G) = fi(y; | ®i, bi; v) f(bi; G)
e Log-likelihood for (v, G)

(N
l(v,G) = log Hfi(yz-lwi;%G)}

\2=1

(N
= log < H /fi(yi’a:iab% v) f(bi; G) dbi}

\1=1

e Involves N g—dimensional integrals
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Inferential approaches

l(v,G) = log {H /f'i(yi | i, bi; ) f(bi; G) db; }

Major practical issue: These integrals are analytically intractable in
general and may be high-dimensional

e Some means of approximation of the integrals required

e Analytical approximation (the approach used historically, first by
PKists) — will discuss first

e Numerical approximation (more recent, as computational resources
have improved)
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Inferential approaches

Inference based on individual estimates: If n; > r, can (in principle)

obtain individual regression estimates 0,

e Eg., ifV;(U;,0;,a) = 0%, can use ordinary least squares
for each 4

e For fancier V;(U;, 0;, ) can use generalized (weighted) least
squares for each ¢ with an estimate of v substituted

e « can be estimated by “pooling” residuals across all IV individuals
e Realistically: Require n; >>r

e Described in Chapter 5 of Davidian and Giltinan (1995)

Idea: Use the @, 1 =1,..., N, as “data” to estimate 3 and G. ..
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Inferential approaches

Idea: Use the 61 1 =1,..., N, as “data” to estimate 3 and G
e Consider linear population model 8; = A;3 + B;b;

e Standard /arge-n; asymptotic theory —

0, \U;,0; ~ N(08;,C;), C; dependson 0;,
e Estimate C; by substituting 51 o —> 51 \U,;,0; ~ N(6;, CA’Z) and
treat @ as fixed
o Write as 51 ~0;+el e |U;0; &N(O,@)

AN

e — Approximate “linear mixed-effects model” for “response” 0,

e Can be fitted (estimate 3, G) using standard linear mixed model
methods (treating C; as fixed )
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Inferential approaches

Fitting the “linear mixed model”:

e “Global two-stage algorithm” (GTS): Fit using the EM algorithm;
see Davidian and Giltinan (1995, Chapter 5)

e Use standard linear mixed model software such as SAS proc
mixed, R function 1me — requires some tweaking to handle the fact
that C; is regarded as known

e Appeal to usual large-N asymptotic theory for the “linear mixed
model” to obtain standard errors for elements of 3, confidence
intervals for elements of 3, etc (generally works well )

Common misconception: This method is often portrayed in the

literature as having no relationship to the non-linear mixed-effects model

a
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Inferential approaches

How does this approximate the integrals? Not readily apparent
e May view the 51 as approximate “sufficient statistics” for the 0,

e Change of variables in the integrals and replace f;(y, | ;, b;; 7v) by
the (normal) density f(0;|U;, 0;; o) corresponding to the
asymptotic approximation

Remarks:

e When all n; are sufficiently large to justify the asymptotic
approximation (e.g., intensive PK studies), | like this method!

e Easy to explain to collaborators

e Gives similar answers to other analytical approximation methods
(coming up)

e Drawback: No standard software (although see my website for
R/SAS code)

a
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Inferential approaches

In many settings: “Rich” individual data not available for all 1
(e.g., population PK studies); i.e., n; “not large" for some or all i

e Approximate the integrals more directly by approximating
fily; | zi; v, G)
Write model with normality assumptions at both stages:
Y, =mi(X,,8,b;) + V' *(X,,B,bi,a) &, b; ~N(0,G)
o Vil/Z (n; X m;) such that ‘/;1/2(%1/2)’ =V
e ¢;|X;,b;, ~N(0,1,,) (n; x1)

e First-order Taylor series about b; = b, “close” to b;, ignoring
cross-product (b; — b, )e; as negligible —>

b; = b
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Inferential approaches

“First-order” method: Take b = 0 (mean of b;)
e — Distribution of Y; given X; approximately normal with
E(Y;| X;) = m;(X;,00),
e — Approximate f;(y,|x;; 7v,G) by a normal density with these
moments, so that /(v,G) is in a closed form

e — Estimate (3, a, G) by maximum likelihood — because integrals
are eliminated, is a direct optimization (but still very messy. . .)

e First proposed by Beal and Sheiner in early 1980s in the context of
population PK
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Inferential approaches

“First-order” method: Software
e fo method in the Fortran package nonmem (widely used by PKists)

e SAS proc nlmixed using the method=firo option (but cannot
handle by default dependence of V;(U;,0;,a) = V;(X;,3,b;, ) on
@, and thus on 3, b;)

Alternative implementation: View as an approximate
“population-averaged” model for mean and covariance

e — Estimate (3, a, G) by solving a set of generalized estimating
equations (GEEs; specifically, “"GEE-1")

e Is a different method from maximum likelihood (“GEE-2")

e Software: SAS macro nlinmix with expand=zero
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Inferential approaches

Problem: These approximate moments are clearly poor approximations
to the true moments

e In particular, poor approximation to E(Y ;| X;) = biased
estimators for (3

“First-order conditional methods”: Use a “better” approximation
e Take b; "closer”to b;

e Natural choice: /I;Z = mode of the posterior density

e — Approximate moments

EY;|X;) = mz’(XinBa/b\i)_Zz'(X’i:/B:/b\i)/b\i
Cov(Y;| X:) ~ Zi(X:,B,b:)G Z{(X,,8,b:) + Vi(X;,8,bi, )
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Inferential approaches

Fitting algorithms: [terate between

(i) Update /I;Z i =1,..., N, by maximizing the posterior density (or
approximation to it) with 4 and G substituted and held fixed

(ii) Hold the b; fixed and update estimation of v and G by either

(a) Maximizing the approximate normal log-likelihood based on
treating Y; given X; as normal with these moments, OR

(b) Solving a corresponding set of GEEs

e Usually “converges” (although no guarantee)

Software:
e nonmem with foce option implements (ii)(a)

e R function nlme, SAS macro nlinmix with expand=blup option
implement (ii)(b)

a
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Inferential approaches

Standard errors, etc: For both “first-order” approximations

e Pretend that the approximate moments are exact and use the usual
large-N asymptotic theory for maximum likelihood or GEEs

e Provides reliable inferences in problems where NN is reasonably large
and the magnitude of among-individual variation is not huge

My experience:

e Even without the integration, these are nasty computational
problems, and good starting values for the parameters are required
(may have to try several sets of starting values).

e The “first-order” approximation is too crude and should be avoided
in general (although can be a good way to get reasonable starting
values for other methods)

e The “first-order conditional” methods often work well, are
numerically well-behaved, and yield reliable inferences

B oot suisics| ()8 gt 69 NC STATE UNIVERSITY




Inferential approaches

l(v,G) = log {H /f'i(yi | i, bi; ) f(bi; G) db; }

Numerical approximation methods: Approximate the integrals using
deterministic or stochastic numerical integration techniques
(¢—dimensional numerical integration) and maximize the log-likelihood

e [ssue: For each iteration of the likelihood optimization algorithm,

must approximate N g-dimensional integrals

e Infeasible until recently: Numerical integration embedded repeatedly
in an optimization routine is computationally intensive

e Gets worse with larger q (the “curse of dimensionality™)
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Inferential approaches

Deterministic techniques:
e Normality of b; =—> Gauss-Hermite quadrature

e Quadrature rule: Approximate an integral by a suitable weighted
average of the integrand evaluated at a ¢q—dimensional grid of
values = accuracy increases with more grid points, but so does
computational burden

e Adaptive Gaussian quadrature: “Center” and “scale” the grid
about b; = can greatly reduce the number of grid points needed

Software: SAS proc nlmixed
e Adaptive Gaussian quadrature: The default
e Gaussian quadrature: method=gauss noad

e As before, proc nlmixed cannot handle dependence of
Vi(U;,0;,a) = Vi(X;, 3,b;,) on 6; and thus on 3, b;
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Inferential approaches

{(v,G) = log {H /fz-(yz- | i, bi; v) f(bi; G) db; }

Stochastic techniques:

e “Brute force” Monte Carlo integration: Represent integral for ¢ by
B
B_l Z fz(yz | L, b(b)7 7)7
b=1

b®) are draws from N (0, G) (at the current estimates of ~, G)
e Can require very large B for acceptable accuracy (inefficient )

e /Importance sampling: Replace this by a suitably weighted version
that is more efficient

Software: SAS proc nlmixed implements importance sampling
(method=isamp)
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Inferential approaches

My experience with SAS proc nlmixed:

e Good starting values are essential (may have to try many sets) —
starting values are required for all of 3, G, «

e Could obtain starting values from an analytical approximation
method

e Practically speaking, quadrature is infeasible for ¢ > 2 almost always
with the mechanism-based non-linear models in PK and other

applications
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Inferential approaches

Other methods: Maximize the log-likelihood via an EM algorithm

e For non-linear mixed models, the conditional expectation in the
E-step is not available in a closed form

e Monte Carlo EM algorithm: Approximate the E-step by ordinary
Monte Carlo integration

e Stochastic approximation EM algorithm : Approximate the E-step by
Monte Carlo simulation and stochastic approximation

e Software?
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Inferential approaches

Bayesian inference : Natural approach to hierarchical models

Big picture: In the Bayesian paradigm

e View 3, a, G, and b;, i = 1,..., N, as random parameters (on
equal footing) with prior distributions (priors for b;, i =1,..., N,
are N(0,G))

e Bayesian inference on 3 and G is based on their posterior
distributions

e The posterior distributions involve high-dimensional integration and
cannot be derived analytically . ..

e ...but samples from the posterior distributions can be obtained via
Markov chain Monte Carlo (MCMC)

a
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Inferential approaches

Bayesian hierarchy:
e Stage 1 — Individual-level model: Assume normality
E(Y;|X;,b;) = FEY;|U;,0;,)=m;(U;,0;,)=m;(X;,3,b,),
Cov(Y;| X;,b;)) = Cov(Y,;|U;,0;) =V;(U;,0;,ax) =V;(X,;,3,b;, )
e Stage 2 — Population model: 6; = d(A;,3,b;), b; ~ N(0,G)
o Stage 3 — Hyperprior: (B,a,G) ~ f(B,a,G) = f(B)f(a)g(G)

e Joint posterior density

[T, fily: | i bis v) f(bi; G F(B, e, G)
fly|x) ’

denominator is numerator integrated wrt (v,G,b;,i =1,..., N)

f(v,G,bly,x) =

e E.g., posteriorfor 3, f(B|y,x): Integrate out o, G, b;, i =1,..., N
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Inferential approaches

Estimator for 3: Mode of posterior
e Uncertainty measured by spread of f(3 |y, x)
e Similarly for o, G, and b;, 7 =1,...,N
Implementation: By simulation via MCMC

e Samples from the full conditional distributions (eventually) behave
like samples from the posterior distributions

e The mode and measures of uncertainty may be calculated
empirically from these samples

e [ssue: Sampling from some of the full conditionals is not entirely
straightforward because of non-linearity of m in 0; and hence b;

e — "All-purpose” software not available in general, but has been
implemented for popular m in add-ons to WinBUGS (e.g., PKBugs)
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Inferential approaches

Experience:

e With weak hyperpriors and “good” data, inferences are very similar
to those based on maximum likelihood and first-order conditional
methods

e (Convergence of the chain must be monitored carefully; “false
convergence” can happen

e Advantage of Bayesian framework: Natural mechanism to

incorporate known constraints and prior scientific knowledge
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Inferential approaches

Inference on individuals: Follows naturally from a Bayesian perspective

e Goal: “"Estimate” b; or 8; for a randomly chosen individual ¢ from
the population

e “Borrowing strength”: Individuals sharing common characteristics
can enhance inference

e — Natural “estimator” is the mode of the posterior f(b; |y, x) or

e Frequentist perspective: (v, &) are fixed — relevant posterior is

i(Y; | T4, by b;; G
g ,) = 14912059 166,

— substitute estimates for (v, G)
e 0;=d(A;B,b;)

e “Empirical Bayes™
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Inferential approaches

Selecting the population model d: The foregoing is predicated on a
fixed d(AZ, 6, bz)

e A key objective in many analyses (e.g., population PK) is to identify
an appropriate d(A;, 3, b;)

e Must identify elements of A; to include in each component of
d(A;,3,b;) and the functional form of each component

e Likelihood inference: Use nested hypothesis tests or information
criteria (AIC, BIC, etc)

e Challenging when A; is high-dimensional. . .

e ...Need a way of selecting among large number of variables and
functional forms in each component (still an open problem. . .)
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Inferential approaches

Selecting the population model d: Continued

e Graphical methods: Based on Bayes or empirical Bayes “estimates”

— Fit an initial population model with no covariates (elements of
A, and obtain B/EB estimates b;, it =1..., N

— Plot components of b; against elements of A;, look for
relationships

— Postulate and fit an updated population model d incorporating
relationships and obtain updated B/EB estimates b; and re-plot

— If model is adequate, plots should show haphazard scatter;
otherwise, repeat

— Issue 1: “Shrinkage” of B/EB estimates could obscure
relationships (especially if b; really aren’t normally distributed )

— Issue 2: “One-at-a-time" assessment of relationships could miss
important features
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Inferential approaches

Normality of b;: The assumption b; ~ N (0, G) is standard in
mixed-effects model analysis; however

e Is it always realistic?

e Unmeasured binary among-individual covariate systematically
associated with 8, — b, has bimodal distribution

e Or a normal distribution may just not be the best model!
Heavy tails, skewness. . .)

e Consequences?

Relaxing the normality assumption: Represent the density of b; by a
flexible form

e Estimate the density along with the model parameters

e — Insight into possible omitted covariates
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Implementation and examples

Example 1: A basic analysis — argatroban study

e Intensive PK study, N = 37 subjects assigned to different
intravenous infusion rates D; for t;,s = 240 min

e ¢;; = 30,60,90,115,160,200,240,245,250,260,275,295,320,360 min

e One compartment model

D, eCli eCli
m(t,U;,0;) = o [exp {— > (t — tinf)_|_} — exp (— e t)]

€ 73* evi
H'L' — (Ol;k7‘/;*),7 U’L — (Diatinf)
ry=0ifz<0andxy =xifz >0

e Parameterized in terms of ClF =log(Cl;), V.* = log(V;)
(population distributions of PK parameters likely skewed )

e No among-individual covariates A;
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Applications

Profiles for subjects receiving 1.0 and 4.5 ug/kg-min:

Infusion rate 1.0 ug/kg/min Infustion rate 4.5 pg/kg/min
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Implementation and examples

Non-linear mixed model:
e Stage 1 — Individual-level model: Y;; normal with
E(Y;; U, 0;) = m(ti;, Ui, 6;)
Cov(Y,;|U;, A;) = Vi(U;, 0;, ) = o2 diag{m?* (t;1, U3, 05),...,m* (tin,, U;,0;)}
—> negligible autocorrelation, measurement error dominates

e Stage 2 — Population model

0,=8+b;, B=(,0), b ~N(0G)

— 1, B2 represent population means of log clearance, volume;
equivalently, exp(31), exp(82) are population medians

— /G111, VGa2 =~ coefficients of variation of clearance, volume
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Implementation and examples

Implementation: Using

e Individual estimates 52 found using “pooled” generalized least
squares including estimation of { (customized R code) followed by
fitting the “linear mixed model” (SAS proc mixed)

e First-order method via version 8.01 of SAS macro nlinmix with
expand=zero — fix ( = 0.22 (estimate from above)

e fFirst-order conditional method via version 8.01 of SAS macro
nlinmix with expand=eblup — fix ( = 0.22

e First-order conditional method via R function nlme (estimate ()

e Maximum likelihood via SAS proc nlmixed with adaptive Gaussian
quadrature — does not support non-constant intra-individual variance
— “transform-both-sides” with 6 =1 — ( ~ 0.75

(Y55 —1)/0 = [{m(ti;, Uy, 0:)}° = 1]/6 + ei5, €i|Ui by ~ N(0,021,,)
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Implementation and examples

Abridged code: Full code at website for Longitudinal Data Analysis

http://www.biostat.harvard.edu/~fitzmaur/lda/

First-order method: SAS nlinmix with expand=zero

First-order conditional method: SAS nlinmix with expand=blup

%inc ’nlmm801.sas’ / nosource; * nlinmix macro;

data arg; infile ’argconc.dat’;
input obsno indiv dose time conc;
tinf=240;
t1=1; if time>tinf then t1=0; t2=tinf*(1-tl1)+tl*time;

run;
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Implementation and examples

/nlinmix(data=arg,
model=Ystr(
logcl=betal+bl; logv=beta2+b2; cl=exp(logcl); v=exp(logv);
predv=(dose/cl)*(1-exp(-cl*t2/v))*exp(-cl*x(1-t1)*(time-tinf)/v);
),
derivs=Ystr( wt=1/predv**(2x0.22); ),
parms=/str(betal=-6.0 beta2=-2.0),
stmts=Ystr(
class indiv;
model pseudo_conc = d_betal d_beta2 / noint notest solution;

random d_bl d_b2 / subject=indiv type=un solution;

weight wt;
),

expand=zero, * or expand=eblup,

procopt=/str (maxiter=500 method=ml)
)

run;
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Implementation and examples

Abridged output: First-order method

Covariance Parameter Estimates

Cov Parm Subject Estimate
UN(1,1) indiv 0.1578
UN(2,1) indiv -0.00308
UN(2,2) indiv 0.01676
Residual 699.80

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t]|
d_betal -5.4889 0.06629 401 -82.80 <.0001
d_beta?2 -1.8277 0.03429 401 -53.30 <.0001
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Implementation and examples

Abridged output: First-order conditional method

Covariance Parameter Estimates

Cov Parm Subject Estimate
UN(1,1) indiv 0.1378
UN(2,1) indiv 0.005669
UN(2,2) indiv 0.004761
Residual 549.08

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t]|
d_betal -5.4325 0.06212 401 -87.46 <.0001
d_beta?2 -1.9256 0.02527 401 -76.19 <.0001
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Implementation and examples

First-order conditional method: R function nlme

library(nlme) # access nlme()

thedat <- read.table("argconc.dat",col.names=c(’obsno’,’indiv’,

’dose’,’time’,’conc’))

meanfunc <- function(x,bl,b2,dose)q{
tinf <- 240; cl <- exp(logcl); v <- exp(logv)
t1l <- x<=tinf; t2 <- tinf*x(1-t1)+t1lx*x;
f1 <- (dose/cl)*(1l-exp(-cl*t2/v))*exp(-cl*x(1-t1)*(x-tinf)/v)
f1

2008 it o1
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Implementation and examples

arg.mlfit <- nlme(conc ~ meanfunc(time,logcl,logv,dose),
fixed = list(logcl ~ 1,logv "1),
random = list(logcl ~ 1,logv ~ 1),
groups = ~ indiv, data = thedat,
start = list(fixed = c¢(-6.0,-2.0)),
method="ML", verbose=T, weights=varPower(0.5))

Abridged output:

Nonlinear mixed-effects model fit by maximum likelihood
AIC BIC logLik
5738.429 5767.572 -2862.214

Random effects: Formula: list(bl ~ 1, b2 ~ 1)
Level: indiv

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
bl 0.37168333 bl
b2 0.06753254 0.268 Residual 20.42295300
B E:::;;&E::lial Statistics 2008 iz 92




Implementation and examples

Variance function:
Structure: Power of variance covariate
Formula: “fitted(.)
Parameter estimates:

power
0.2432619
Fixed effects: list(bl ~ 1, b2 ~ 1)

Value Std.Error DF  t-value p-value

bl -5.432546 0.06230325 437 -87.19522 0
b2 -1.917993 0.02513039 437 -76.32165 0
Correlation:
b1l
b2 0.156

Number of Observations: 475
Number of Groups: 37
Estimate of sigma 20.42295
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Implementation and examples

Maximum likelihood: SAS proc nlmixed

data arg; set arg; conctrans = conc**0.75; run;

proc nlmixed data=arg;
parms betal=-6.0 beta2=-2.0 s2b1=0.14 cb12=0.006
s2b2=0.006 s2=23.0;
logcl=betal+bl;
logv=beta2+b2;
cl=exp(logcl) ;
v=exp(logv) ;
pred=((dose/cl)*(1-exp(-cl*xt2/v))
*xexp (—cl*(1-t1) *(time-tinf) /v))**0.75;
model conctrans ~ normal(pred,s2);
random bl b2 ~ normal([0,0], [s2bl,cbl12,s2b2]) subject=indiv;

run;
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Implementation and examples

Abridged output:

Fit Statistics

-2 Log Likelihood 4007 .8
ATIC (smaller is better) 4019.8
Parameter Estimates
Standard
Parameter Estimate Error DF t Value Pr > |t]|
betal -5.4237 0.06277 35 -86.40 <.0001
beta?2 -1.9238 0.02972 35 -64.73 <.0001
s2bil 0.1411 0.03389 35 4.16 0.0002
cbl2 0.006562 0.01020 35 0.64 0.5242
s2b2 0.006010 0.006141 35 0.98 0.3345
s2 192.72 13.6128 35 14.16 <.0001
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Implementation and examples

Method 061 B2 Oe ¢ G11 G2 G2

Indiv. est. —5.433 —-1.927 2347 0.22 0.137 6.06 6.17
(0.062) (0.026)

First-order —5.490 —1.828 26.45 - 0.158 —3.08 16.76

nlinmix (0.066) (0.034)

First-order cond. —5.432 —-1.926 23.43 - 0.138 5.67 4.76

nlinmix (0.062) (0.026)

First-order cond. —5.433 —1.918 20.42 0.24 0.138 6.73 4.56

nlme (0.063) (0.025)

ML —5.424 —-1924 13.88 - 0.141 6.56 6.01

nlmixed (0.063) (0.030)

Values for G12, G2 are multiplied by 10°

a
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Implementation and examples

Interpretation: Concentrations measured in ng/ml = 1000 ug/ml

e Median argatroban clearance ~ 4.4 ug/ml/kg
(=~ exp(—5.43) x 1000)

e Median argatroban volume ~ 145.1 ml/kg =— ~ 10 liters for
a 70 kg subject

e Assuming Cl;, V; approximately lognormal

— (G111 =~ V0.14x 100 =~ 37% coefficient of variation for clearance

— G99 = 8% CV for volume
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Implementation and examples

Individual inference: Individual estimate (dashed) and empirical Bayes
estimate (solid)

1200
| |
1000 1200

800
|

Argatroban Concentration (ng/ml)
600
|
400
|

Argatroban Concentration (ng/ml)
600
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Implementation and examples

Example 2: A simple population PK study analysis: phenobarbital

World-famous example
N = 59 preterm infants treated with phenobarbital for seizures
n; = 1 to 6 concentration measurements per infant, total of 155

Among-infant covariates (A;): Birth weight w; (kg), 5-minute
Apgar score §; = I[Apgar < 5]

Multiple intravenous doses: U; = (sjp, Diy), £ =1,...,d;

One-compartment model (principle of superposition)

Dy Cl;
m(t.U,00 = 30 Do {-SEe s}
b:s; o<t V; V;

Objectives: Characterize PK and its variation — Mean/median Cl;,
V;? Systematic associations with among-infant covariates? Extent
of unexplained variation?

a
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Implementation and examples

Dosing history and concentrations for one infant:

60

40
O

20

o O
>
.

Phenobarbital conc. (mcg/ml)
O
*

0 50 100 150 200 250 300
Time (hours)
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Implementation and examples

Non-linear mixed model:

e Stage 1 — Individual-level model
E(Yi;|U;,0;) = m(ti;, Uy, 0;), Cov(Y;|Uy, Ay) = Vi(Uy, 05, c0) = 07 I,

— negligible autocorrelation, measurement error dominates and
has constant variance

e Stage 2 — Population model

— Without among-infant covariates A;
logCl; = 01 + b1, logVi = P2+ bio
— With among-infant covariates A;

log Cl; = B1 + +B3w; +bi1, logVy = Bo + +Baw; + B50; + b2
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Implementation and examples

Empirical Bayes estimates vs. covariates: Fit without

Clearance random effect
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Implementation and examples

Empirical Bayes estimates vs. covariates: Fit with
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Implementation and examples

Relaxing the normality assumption on b;: Represent the density of b,

by a flexible form, fit by maximum likelihood
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Extensions

Multivariate response: More than one type of response measured

longitudinally on each individual

e Objectives: Understand the relationships between the response

trajectories and the processes underlying them
e Key example: pharmacokinetic/pharmacodynamic (PK/PD) analysis
e PD — “"What the drug does to the body”

Example: Argatroban study

e /n addition to drug concentrations, samples at 5-9 time points from
0 to 540 min (not necessarily the same as for concentrations) —
measure activated partial thromboplastin time (aPTT)

e aPTT is the pharmacodynamic response

e Goal: Elucidate the relationships between argatroban concentration
and aPTT and among underlying PK and PD processes

a
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Extensions

Required: A joint model for PK and PD

e Data:
— Y-PK at times t,f;K (PK concentrations)

— Y;5'P at times t;;” (PD aPTT responses)

e One compartment model for PK

D, CL Ol
(t UZ) HPK) Cl* [exp{ eV.* (t - t|nf)—|—} — €XP <_ V* t)]

0: " = (ClIr, V), U;=(D;,tin)

~PK
e PK analysis = can obtain individual estimates 6, and predicted

~PK
concentrations m(t;;”,0; )

~PK
o — p/ot }/;]PD VS. m(tZD, 07, )
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Extensions

Concentration-PD response relationship:

Subject 15 Subject 19
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80
8
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40
40

*
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20
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Extensions

Suggests: Empirical model for concentration-aPTT response
relationship — sigmoidal “FE,,,x model”

Eoax — F
PTT = PD HPD K max 0
a m~ ~ (conc, ) 0+ I+ ECay Jconc

0"" = (Ey, Fmax, ECs0)’

Result: Assuming measurement error dominates realization variation, so
(X 1 - d PK
true” PK concentration for ¢ at t = m(t,U;,0; )

e Stage 1 — Individual-level model

PK  _ PK (;PK PK PK
Y = m " (t; U, 0; ) + e
PD  _ PDy,  PK (4 PD PKy\ gPD PD
Y = m {m" (7, U, 0;7),0; " +ej;
o eZK, eZD mutually independent (primarily measurement error)
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Extensions

Full model: Combined responses Y ; = (Y X2/ vy 7Py
0,=(0,"",0;"") = (CI7,V}, Foi, Fmax.i» ECs50)’
e Stage 1 — Individual-level model
E(YPK|U.,0,) = mPK (15K U, 07%)
E(YFP|U,,0,) = mPP{mPK (P U, 07K, 67"}
Cov(Y;|U,, 0;) = block diag{V"* (U;,0;,a” ), VP (U;,0;,a””)}
VIR(U,,0;,a"K) = 02 prdiagl..., (mPK (5K, U, 00%)) 2" )
VPD(U,,0;,aFP) = ag,PDdiag(...,[mPD{mPK(t{;D,U orK). efD}]%PD,...)

e Stage 2 — Population model

0, =B+b, B=(p,....0), b;~N(0,G)
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Extensions

Time-dependent among-individual covariates: Among-individual

covariates change over time within an individual

e In principle, one could write 8;; for each t;;; however. ..

e Key issue: Does this make scientific sense?

e PK: Do pharmacokinetic processes vary within an individual?
Example: Quinidine study

e Creatinine clearance, «a;-acid glycoprotein concentration, etc,
change over dosing intervals

e How to incorporate dependence of C'l;, V; on a;-acid glycoprotein
concentration?
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Extensions

Data for a representative subject:

time conc. dose age weight creat. glyco.
(hours)  (mg/L) (mg) (vears)  (kg)  (ml/min) (mg/dl)
0.00 - 166 75 108 > 50 69
6.00 - 166 75 108 > 50 69
11.00 - 166 75 108 > 50 69
17.00 - 166 75 108 > 50 69
23.00 - 166 75 108 > 50 69
27.67 0.7 — 75 108 > 50 69
29.00 - 166 75 108 > 50 04
35.00 - 166 75 108 > 50 04
41.00 - 166 75 108 > 50 04
47.00 - 166 75 108 > 50 04
53.00 - 166 75 108 > 50 04
65.00 - 166 75 108 > 50 04
71.00 - 166 75 108 > 50 04
77.00 0.4 — 75 108 > 50 04
161.00 — 166 75 108 > 50 88
168.75 0.6 - 75 108 > 50 88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF

a
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Extensions

Population model: Standard approach in PK

e For subject 7: a;-acid glycoprotein concentration likely measured
intermittently at times 0, 29, 161 hours and assumed constant over
the intervals (0,29), (29,77), (161,-) hours

e Forintervals I, k=1,...,a (a = 3 here), A;x = among-individual

covariates for t;; € I, —> e.g., linear model
0i; = AiB + b;

e This population model assumes “within subject inter-interval
variation” entirely “explained” by changes in covariate values

e Alternatively: Nested random effects

Hij = Azkﬂ -+ bz -+ b@'k, b@', bzk independent
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Extensions

Multi-level models: More generally

o Nesting: E.g., responses Y., 7 = 1,...,n;, on several trees
(k=1,...,v;) within each of several plots (i =1,...,N)

0. = A;.3+ b; + b, b;,b;. independent

Missing/mismeasured covariates: A;, U;, t;;
Censored response: E.g., due to an assay quantification limit

Semiparametric models: Allow m(t,U;, 6;) to depend on an
unspecified function g(t, ;)

e Flexibility, model misspecification
Clinical trial simulation: “Virtual” subjects simulated from a

non-linear mixed-effects model for PK/PD /disease progression linked to
a clinical end-point
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Discussion

Summary:

e The non-linear mixed-effects model is now a standard statistical
framework in many areas of application

e Is appropriate when scientific interest focuses on within-individual
mechanisms/processes that can be represented by parameters in a
non-linear (often theoretical ) model for individual time course

e Free and commercial software is available, but implementation is
still complicated

e Specification of models and assumptions, particularly the population
model, is somewhat an art-form

e Current challenge: High-dimensional A; (e.g., genomic information)

e Still plenty of methodological research to do
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Discussion

See the references on slide 3 for an extensive bibliography
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