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Introduction

Common situation in the biosciences:

• A continuous response evolves over time (or other condition) within

individuals from a population of interest

• Scientific interest focuses on features or mechanisms that underlie

individual time trajectories of the response and how these vary

across the population

• A theoretical or empirical model for such individual profiles, typically

non-linear in parameters that may be interpreted as representing

such features or mechanisms, is available

• Repeated measurements over time are available on each individual in

a sample drawn from the population

• Inference on the scientific questions of interest is to be made in the

context of the model and its parameters
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Introduction

Non-linear mixed-effects model:

• Also known as the hierarchical non-linear model

• A formal statistical framework for this situation

• Much statistical methodological research in the early 1990s

• Now widely accepted and used, with applications routinely reported

and commercial and free software available

• Extensions and methodological innovations are still ongoing

Objectives of this workshop:

• Provide an introduction to the formulation, utility, and

implementation of non-linear mixed models

• Focus on applications in pharmaceutical and health sciences research
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Applications

Pharmacokinetics (PK): “What the body does to the drug ”

• One of the most important application areas

• The area that inspired much of the methodological development for

non-linear mixed-effects models

• Broad goal : Understand and characterize intra-subject processes of

drug absorption , distribution , metabolism and excretion

(elimination ) governing achieved drug concentrations

• . . . and how these processes vary across subjects

• Critical for developing dosing strategies

An outstanding overview: “Pharmacokinetics and

pharmacodynamics ,” by D.M. Giltinan, in Encyclopedia of Biostatistics,

2nd edition
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Applications

PK studies in humans: Two types

• “Intensive studies ”

– Small number of subjects (often healthy volunteers )

– Frequent samples over time, often following single dose

– Usually early in drug development

– Useful for gaining initial information on “typical ” PK behavior in

humans and for identifying an appropriate PK model. . .

• Preclinical PK studies in animals are generally intensive studies
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Applications

PK studies in humans: Two types

• “Population studies ”

– Large number of subjects (heterogeneous patients)

– Often in later stages of drug development or after a drug is in

routine use

– Haphazard samples over time, multiple dosing intervals

– Extensive demographical and physiological characteristics

– Useful for understanding associations between patient

characteristics and PK behavior =⇒ tailored dosing

recommendations
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Applications

Theophylline study: 12 subjects, same oral dose (mg/kg)
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Applications

Features:

• Intensive study

• Similarly shaped concentration-time profiles across subjects

• . . . but peak, rise, decay vary

• Attributable to inter-subject variation in underlying PK behavior

(absorption, distribution, elimination)

Standard: Represent the body by a simple system of compartments

• Gross simplification but extraordinarily useful. . .
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Applications

One-compartment model with first-order absorption, elimination:

oral dose D A(t) ��

keka

dA(t)
dt

= kaAa(t) − keA(t), A(0) = 0

dAa(t)
dt

= −kaAa(t), Aa(0) = FA(0)

F = bioavailability, Aa(t) = amount at absorption site

Concentration at t : m(t) =
A(t)
V

=
kaDF

V (ka − ke)
{exp(−ket) − exp(−kat)},

ke = Cl/V, V = “volume ” of compartment, Cl = clearance

11



Applications

One-compartment model for theophylline:

• Single “blood compartment ” with fractional rates of absorption ka

and elimination ke

• Deterministic mathematical model

• Individual PK behavior characterized by PK parameters

θ̂ = (ka, V, Cl)′

By-product:

• The PK model assumes PK processes are dose-independent

• =⇒ Knowledge of the values of θ̂ = (ka, V, Cl)′ allows simulation of

concentrations achieved at any time t under different doses

• Can be used to develop dosing regimens
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Applications

Objectives of analysis:

• Estimate “typical ” values of θ = (ka, V, Cl)′ and how they vary in

the population of subjects based on the longitudinal concentration

data from the sample of 12 subjects

• =⇒ Must incorporate the (theoretical ) PK model in an appropriate

statistical model (somehow. . . )
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Applications

Argatroban study: Another intensive study

• Administered by intravenous infusion for 4 hours (240 min)

• N = 37 subjects assigned to different constant infusion rates

• One-compartment model with constant intravenous infusion rate

D (μg/kg/min) for duration tinf = 240 min

m(t) =
D

Cl

[
exp

{
−Cl

V
(t − tinf)+

}
− exp

(
−Cl

V
t

)]
, θ = (Cl, V )′

x+ = 0 if x ≤ 0 and x+ = x if x > 0

Objectives of analysis:

• Estimate “typical ” values of θ = (Cl, V )′ and how they vary in the

population of subjects

• Understand relationship between achieved concentrations and a

clinical or other response (pharmacodynamics ; more later. . . )
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Applications

Profiles for 4 subjects receiving 4.5 μg/kg-min:
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Applications

Quinidine population study: N = 136 patients undergoing treatment

with oral quinidine for atrial fibrillation or arrhythmia

• Demographical/physiological characteristics : Age, weight, height,

ethnicity/race, smoking status, ethanol abuse, congestive heart

failure, creatinine clearance, α1-acid glycoprotein concentration, . . .

• Samples taken over multiple dosing intervals =⇒
(dose time, amount) = (s�, D�) for the �th dose interval

• Standard assumption: “Principle of superposition ” =⇒ multiple

doses are “additive ”

• One compartment model gives expression for concentration

at time t. . .
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Applications

For a subject not yet at a steady state:

Aa(s�) = Aa(s�−1) exp{−ka(s� − s�−1)} + D�,

m(s�) = m(s�−1) exp{−ke(s� − s�−1)} + Aa(s�−1)
ka

V (ka − ke)

×
[
exp{−ke(s� − s�−1)} − exp{−ka(s� − s�−1)}

]
.

m(t) = m(s�) exp{−ke(t − s�)} + Aa(s�)
ka

V (ka − ke)

×
[
exp{−ke(t − s�)} − exp{−ka(t − s�)}

]
, s� < t < s�+1

ke = Cl/V, θ = (ka, V, Cl)′

Objective of analysis: Characterize typical values of and variation in

θ = (ka, V, Cl)′ across the population and elucidate systematic

associations between θ and patient characteristics
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Applications

Data for a representative subject:

time conc. dose age weight creat. glyco.
(hours) (mg/L) (mg) (years) (kg) (ml/min) (mg/dl)

0.00 – 166 75 108 > 50 69
6.00 – 166 75 108 > 50 69

11.00 – 166 75 108 > 50 69
17.00 – 166 75 108 > 50 69
23.00 – 166 75 108 > 50 69
27.67 0.7 – 75 108 > 50 69
29.00 – 166 75 108 > 50 94
35.00 – 166 75 108 > 50 94
41.00 – 166 75 108 > 50 94
47.00 – 166 75 108 > 50 94
53.00 – 166 75 108 > 50 94
65.00 – 166 75 108 > 50 94
71.00 – 166 75 108 > 50 94
77.00 0.4 – 75 108 > 50 94

161.00 – 166 75 108 > 50 88
168.75 0.6 – 75 108 > 50 88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF
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Applications

Toxicokinetics: Physiologically-based pharmacokinetic (PBPK ) models

• PK of environmental , chemical agents; studies often in animals

• N animals exposed, repeated concentrations over time on each

• More “realistic ” representation of the body (e.g., organ, tissue

compartments )

• System of differential equations cannot be solved analytically

• Lots of PK parameters, some measurable, some unknown:

Compartment volumes V , partition coefficients P , flow rates F ,

metabolic parameters Vmax, Km, etc

Objectives of analysis:

• Characterize in particular metabolic mechanisms (Vmax, Km) and

how these vary in the population

• Understand relationship between metabolic processes and toxicities
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Applications

Lungs
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=
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=
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20



Applications

HIV dynamics: Human immunodeficiency virus (HIV), attacks the

immune system

• Broad goal : Characterize mechanisms underlying the interaction

between HIV and the immune system over time governing disease

progression and the effects of anti-retroviral treatments (ART)

• Typical study : N subjects, repeated measurements on viral load

(virologic status), CD4+ T cell count (immunologic status) over

time (possibly on/off ART)

• Compartmental representation of mechanisms taking place within an

infected subject

• System of (deterministic) nonlinear ordinary differential equations;

=⇒ viral load, CD4+ T cell count, etc, at any time
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Applications

Simple model for within-subject HIV dynamics:
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Applications

Differential equations:

Ṫ1 = λ1 − d1T1 − {1 − ε1U(t)}k1VIT1

Ṫ2 = λ2 − d2T2 − {1 − fε1U(t)}k2VIT2

Ṫ ∗
1 = {1 − ε1U(t)}k1VIT1 − δT ∗

1 − m2ET ∗
1

Ṫ ∗
2 = {1 − fε1U(t)}k2VIT2 − δT ∗

2 − m2ET ∗
2

V̇I = {1 − ε2U(t)}103NT δ(T ∗
1 + T ∗

2 ) − cVI

−{1 − ε1U(t)}ρ1103k1T1VI − {1 − fε1U(t)}ρ2103k2T2VI

V̇NI = ε2U(t)103NT δ(T ∗
1 + T ∗

2 ) − cVNI

Ė = λE +
bE(T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 ) + Kb
E − dE(T ∗

1 + T ∗
2 )

(T ∗
1 + T ∗

2 ) + Kd
E − δEE

• θ = (λ1, d1, ε1, k1, . . .)′ plus initial conditions

• Observable: CD4 count = T1 + T ∗
1 , viral load = VI + VNI

• U(t) = ART input at t (0 ≤ U(t) ≤ 1, 0 = off, 1 = on)
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Applications
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Objectives of analysis: Characterize typical values of and variation in θ

across the population, elucidate systematic associations between θ and

patient characteristics, simulate disease progression under different U(t)
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Applications

Summary: Common themes

• A response (or responses) evolves over time (e.g., concentration

in PK)

• Interest focuses on underlying mechanisms/processes taking place

within an individual leading to response trajectories and how these

vary across the population

• A (usually deterministic ) model is available representing

mechanisms explicitly by scientifically meaningful model parameters

• Mechanisms cannot be observed directly

• =⇒ Inference on mechanisms must be based on repeated

measurements of the response over time on each of a sample of N

individuals from the population
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Applications

Other application areas:

• Stability testing

• Agriculture

• Forestry

• Dairy science

• Cancer dynamics

• Many more . . .

For definiteness: We will use PK as a running example
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Model formulation

Non-linear mixed effects model: Embed the (deterministic ) model

describing individual trajectories in a statistical model

• Formalizes knowledge and assumptions about variation in responses

and mechanisms within and among individuals

• Provides a framework for inference based on repeated measurement

data from N individuals

• For simplicity : Focus on univariate response (= drug concentration

in PK); some discussion of multivariate response at the end

Basic set-up: N individuals from a population of interest, i = 1, . . . , N

• For individual i, observe ni measurements of the response

Yi1, Yi2, . . . , Yini at times ti1, ti2, . . . , tini

• I.e., for individual i, Yij at time tij , j = 1, . . . , ni
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Model formulation

Within-individual conditions of observation: For individual i, U i

• Theophylline : U i = Di = oral dose for i at time 0 (mg/kg)

• Argatroban : U i = (Di, tinf) = infusion rate and duration for i

• Quinidine : For subject i observed over di dosing intervals, U i has

elements (si�, Di�)′, � = 1, . . . , di

• HIV dynamics : U i is continuous function Ui(t) with subject i’s

known treatment status at any time t

• U i are “within-individual covariates ” – needed to describe

response-time relationship at the individual level
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Model formulation

Individual characteristics: For individual i, Ai

• Age, weight, ethnicity, smoking status, etc. . .

• For now : Elements of Ai do not change over observation period

(will discuss changing elements later)

• Ai are “among-individual covariates ” – relevant only to how

individuals differ but are not needed to describe response-time

relationship at individual level

Observed data: (Y ′
i, X

′
i)

′, i = 1, . . . , N , assumed independent across i

• Y i = (Yi1, . . . , Yini
)′

• Xi = (U ′
i, A

′
i)

′ = combined within- and among-individual

covariates (for brevity later)

Basic model: A two-stage hierarchy
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Model formulation

Stage 1 – Individual-level model:

Yij = m(tij , U i, θi) + eij , j = 1, . . . , ni, θi (r × 1)

• E.g., for theophylline (F ≡ 1)

m(t, U i, θi) =
kaiDi

Vi(kai − Cli/Vi)
{exp(−Clit/Vi) − exp(−kait)}

θi = (kai, Vi, Cli)′ = (θi1, θi2, θi3)′, r = 3, U i = Di

• Assume eij = Yij − m(tij , U i, θi) satisfy E(eij |U i, θi) = 0

=⇒ E(Yij |U i, θi) = m(tij , U i, θi) for each j

• Standard assumption : eij and hence Yij are conditionally normally

distributed (on U i, θi)

• More shortly. . .
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Model formulation

Stage 2 – Population model:

θi = d(Ai, β, bi), i = 1, . . . , N, (r × 1)

• d is r-dimensional function describing relationship between θi and

Ai in terms of . . .

• β (p × 1) fixed parameter (“fixed effects ”)

• bi (q × 1) “random effects ”

• Characterizes how elements of θi vary across individual due to

– Systematic associations with Ai (modeled via β)

– “Unexplained variation ” in the population (represented by bi)

• Usual assumptions :

E(bi |Ai) = E(bi) = 0 and Cov(bi |Ai) = Cov(bi) = G, bi ∼ N(0, G)
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Model formulation

Stage 2 – Population model:

θi = d(Ai, β, bi), i = 1, . . . , N

Example: Quinidine, θi = (kai, Vi, Cli)′ (r = 3)

• Ai = (wi, δi, ai)′, wi = weight, , ai = age,

δi = I(creatinine clearance > 50 ml/min)

• bi = (bi1, bi2, bi3)′ (q = 3), β = (β1, . . . , β7)′ (p = 7)

kai = θi1 = d1(Ai, β, bi) = exp(β1 + bi1),

Vi = θi2 = d2(Ai, β, bi) = exp(β2 + β4wi + bi2),

Cli = θi3 = d3(Ai, β, bi) = exp(β3 + β5wi + β6δi + β7ai + bi3),

• Positivity of kai, Vi, Cli enforced

• If bi ∼ N(0, G), kai, Vi, Cli are each lognormally distributed in the

population
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Model formulation

Stage 2 – Population model:

θi = d(Ai, β, bi), i = 1, . . . , N

Example: Quinidine, continued, θi = (kai, Vi, Cli)′ (r = 3)

• “Are elements of θi fixed or random effects ?”

• “Unexplained variation ” in one component of θi “small ” relative to

others – no associated random effect, e.g., r = 3, q = 2

kai = exp(β1 + bi1)

Vi = exp(β2 + β4wi) (all population variation due to weight)

Cli = exp(β3 + β5wi + β6δi + β7ai + bi3)

• An approximation – usually biologically implausible ; used for

parsimony, numerical stability
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Model formulation

Stage 2 – Population model:

θi = d(Ai, β, bi), i = 1, . . . , N

• Allows non-linear (in β and bi) specifications for elements of θi

• May be more appropriate than linear specifications (positivity

requirements, skewed distributions)

Some accounts: Restrict to linear specification

θi = Aiβ + Bibi

• Ai (r × p) “design matrix ” depending on elements of Ai

• Bi (r × q) typically 0s and 1s (identity matrix if r = q)

• Mainly in the statistical literature
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Model formulation

Stage 2 – Linear population model:

θi = Aiβ + Bibi

Example: Quinidine, continued

• Reparameterize in terms of θi = (k∗
ai, V

∗
i , Cl∗i )′, k∗

ai = log(kai),
V ∗

i = log(Vi), and Cl∗i = log(Cli) (r = 3)

k∗
ai = β1 + bi1,

V ∗
i = β2 + β4wi + bi2,

Cl∗i = β3 + β5wi + β6δi + β7ai + bi3

Ai =

⎛⎜⎜⎝
1 0 0 0 0 0 0

0 1 0 wi 0 0 0

0 0 1 0 wi δi ai

⎞⎟⎟⎠ , Bi =

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠
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Model formulation

Within-individual considerations: Complete the Stage 1

individual-level model

• Assumptions on the distribution of Y i given U i and θi

• Focus on a single individual i observed under conditions U i

• Yij at times tij viewed as intermittent observations on a

stochastic process

Yi(t, U i) = m(t, U i, θi) + ei(t, U i)

E{ei(t, U i) |U i, θi} = 0, E{Yi(t, U i) |U i, θi} = m(t, U i, θi) for all t

• Yij = Yi(tij , U i), eij = ei(tij , U i)

• “Deviation ” process ei(t, U i) represents all sources of variation

acting within an individual causing a realization of Yi(t, U i) to

deviate from the “smooth ” trajectory m(t, U i, θi)
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Model formulation

Conceptualization:
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Model formulation

Conceptual interpretation:

• Solid line : m(t, U i, θi) represents “inherent tendency ” for i’s

response to evolve over time; depends on i’s “inherent

characteristics ” θi

• Dashed line : Actual realization of the response – fluctuates about

solid line because m(t, U i, θi) is a simplification of complex truth

• Symbols : Actual, intermittent measurements of the dashed line –

deviate from the dashed line due to measurement error

Result: Two sources of intra-individual variation

• “Realization deviation ”

• Measurement error variation

• m(t, U i, θi) is the average of all possible realizations of measured

response trajectory that could be observed on i
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Model formulation

To formalize: ei(t, U i) = eR,i(t, U i) + eM,i(t, U i)

• Within-individual stochastic process

Yi(t, U i) = m(t, U i, θi) + eR,i(t, U i) + eM,i(t, U i)

E{eR,i(t, U i) |U i, θi} = E{eM,i(t, U i) |U i, θi} = 0

• =⇒ Yij = Yi(tij , U i), eR,i(tij , U i) = eR,ij , eM,i(tij , U i) = eM,ij

Yij = m(tij , U i, θi) + eR,ij + eM,ij︸ ︷︷ ︸
eij

eR,i = (eR,i1, . . . , eR,ini
)′, eM,i = (eM,i1, . . . , eM,ini

)′

• eR,i(t, U i) = “realization deviation process ”

• eM,i(t, U i) = “measurement error deviation process ”

• Assumptions on eR,i(t, U i) and eM,i(t, U i) lead to a model for

Cov(ei |U i, θi) and hence Cov(Y i |U i, θi)
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Model formulation

Conceptualization:

0 50 100 150 200 250 300 350

0
20

0
40

0
60

0
80

0
10

00

Time

C
on

ce
nt

ra
tio

n

40



Model formulation

Realization deviation process:

• Natural to expect eR,i(t, U i) and eR,i(s,U i) at times t and s to be

positively correlated , e.g.,

corr{eR,i(t, U i), eR,i(s,U i) |U i, θi} = exp(−ρ|t − s|), ρ ≥ 0

• Assume variation of realizations about m(t, U i, θi) are of similar

magnitude over time and individuals, e.g.,

Var{eR,i(t, U i) |U i, θi} = σ2
R ≥ 0 (constant for all t)

• Or assume variation depends on m(t, U i, θi), e.g.,

Var{eR,i(t, U i) |U i, θi} = σ2
R{m(t, U i, θi)}2η, η > 0

• Result : Assumptions imply a covariance model (ni × ni)

Cov(eR,i |U)i, θi) = VR,i(U i, θi, αR), αR = (σ2
R, ρ)′ or αR = (σ2

R, ρ, η)′
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Model formulation

Conceptualization:
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Model formulation

Measurement error deviation process:

• Measuring devices commit haphazard errors =⇒
corr{eM,i(t, U i), eM,i(s,U i) |U i, θi} = 0 for all t > s

• Assume magnitude of errors is similar regardless of level, e.g.,

Var{eM,i(t, U i) |U i, θi} = σ2
M ≥ 0 (constant for all t)

• Or assume magnitude changes with level; often approximated under

assumption Var{eR,i(t, U i) |U i, θi} << Var{eM,i(t, U i) |U i, θi}
Var{eM,i(t, U i) |U i, θi} = σ2

M{m(t, U i, θi)}2ζ , ζ > 0

• Result : Assumptions imply a covariance model (ni × ni)
(diagonal matrix )

Cov(eM,i |U)i, θi) = VM,i(U i, θi, αR), αM = σ2
M or αM = (σ2

M , ζ)′

43



Model formulation

Combining:

• Standard assumption : eR,i(t, U i) and eM,i(t, U i) are independent

Cov(ei |U i, θi) = Cov(eR,i |U i, θi) + Cov(eM,i |U i, θi)

= VR,i(U i, θi, αR) + VM,i(U i, θi, αM )

= Vi(U i, θi, α)

α = (α′
R, α′

M )′

• This assumption may or may not be realistic

Practical considerations: Quite complex intra-individual covariance

models can result from faithful consideration of the situation. . .

• . . . But may be difficult to implement
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Model formulation

Standard model simplifications: One or more might be adopted

• Negligible measurement error =⇒

Vi(U i, θi, α) = VR,i(U i, θi, αR)

• The tij may be at widely spaced intervals =⇒ autocorrelation

among eR,ij negligible =⇒ Vi(U i, θi, α) is diagonal

• Var{eR,i(t, U i) |U i, θi} << Var{eM,i(t, U i) |U i, θi} =⇒
measurement error is dominant source

• Simplifications should be justifiable in the context at hand

Note: All of these considerations apply to any mixed-effects model

formulation, not just non-linear ones!
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Model formulation

Routine assumption: Vi(U i, θi, α) = σ2
eIni

α = σ2
e

• Often made by “default ” with little consideration of the

assumptions it implies !

• Assumes autocorrelation among eR,ij negligible

• Assumes constant variances , i.e., Var{eR,i(t, U i) |U i, θi} = σ2
R

and Var{eM,i(t, U i) |U i, θi} = σ2
M =⇒ σ2

e = σ2
R + σ2

M

• If measurement error is negligible =⇒ σ2
e = σ2

R

• If Var{eR,i(t, U i) |U i, θi} << Var{eM,i(t, U i) |U i, θi}
=⇒ σe ≈ σ2

M
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Model formulation

Standard assumptions in PK:

• Sampling times are sufficiently far apart that autocorrelation among

eR,ij negligible (not always justifiable!)

• Measurement error dominates realization error so that

Var(eR,ij |U i, θi) << Var(eM,ij |U i, θi)

(often reasonable )

• Measurement error variance depends on level, approximated by

Var(eM,ij |U i, θi) = σ2
M{m(tij , U i, θi)}2ζ

so that Vi(U i, θi, α) = VM,i(U i, θi, αM ) is diagonal with these

elements (almost always the case)
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Model formulation

Distributional assumption:

• Specification for E(Y i |U i, θi) = mi(U i, θi),

mi(U i, θi) = {m(ti1, U i, θi), . . . , m(tini
, U i, θi)}′ (ni × 1)

• Specification for Cov(Y i |U i, θi) = Vi(U i, θi, α)

• Standard assumption : Distribution of Y i given U i and θi is

multivariate normal with these moments

• Alternatively, model on the log scale =⇒ Yij are conditionally (on

U i and θi) lognormal

• In what follows : Yij denotes the response on the original or

transformed scale as appropriate
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Model formulation

Summary of the two-stage model: Recall Xi = (U ′
i, A

′
i)

′

• Substitute population model for θi in individual-level model

• Stage 1 – Individual-level model :

E(Y i |Xi, bi) = E(Y i |U i, θi) = mi(U i, θi) = mi(Xi, β, bi),

Cov(Y i |Xi, bi) = Cov(Y i |U i, θi) = Vi(U i, θi, α) = Vi(Xi, β, bi, α)

• Stage 2 – Population model :

θi = d(Ai, β, bi), bi ∼ (0, G)

• Standard assumptions :

– Y i given Xi and bi multivariate normal (perhaps transformed )

– bi ∼ N(0, G)

– All of these can be relaxed
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Model interpretation and inferential objectives

“Subject-specific” model:

• Individual behavior is modeled explicitly at Stage 1, depending on

individual-specific parameters θi that have scientifically meaningful

interpretation

• Models for E(Y i |U i, θi) and θi, and hence E(Y i |Xi, bi), are

specified . . .

• . . . in contrast to a “population-averaged ”model, where a model for

E(Y i |Xi) is specified directly (more on this momentarily. . . )

• This is consistent with the inferential objectives

• Interest is in “typical ” values of θi and how they vary in the

population. . .
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Model interpretation and inferential objectives

Main inferential objectives: May be formalized in terms of the model

• For a specific population model d, the fixed effect β characterizes

the mean or median (“typical ”) value of θi in the population

(perhaps for individuals with given value of Ai)

• =⇒ Determining an appropriate population model d(Ai, β, bi) and

inference on elements of β in it is of central interest

• Variation of θi across individuals beyond that attributable to

systematic associations with among-individual covariates Ai is

described by G (“unexplained variation ”)

• =⇒ Inference on G is of interest (in particular, diagonal elements )
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Model interpretation and inferential objectives

Additional inferential objectives: In some contexts

• Inference on θi and/or m(t0, U i, θi) at some specific time t0 for

i = 1, . . . , N or for future individuals is of interest

• Example : “Individualized ” dosing in PK

• The model is a natural framework for “borrowing strength ” across

similar individuals (more later)
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Model interpretation and inferential objectives

“Subject-specific” vs. “Population-averaged”:

• The non-linear mixed model is a “subject-specific ” model =⇒
Interest is in “typical ” values of individual-specific parameters

(mechanisms), θi, and how they vary in the population

• A “population-averaged ” model describes the “typical ” response

pattern (averaged over individuals in the population), E(Y i |Xi),
and the overall variation in response patterns about it, Cov(Y i |Xi)

• =⇒ In a “population-averaged ”model, individual-specific behavior is

not acknowledged ; rather, it is “averaged out ” in advance, i.e.,

E(Y i |Xi) =
∫

E(Y i |Xi, bi) dFb(bi)

=⇒ E(Y i |Xi) is specified directly ; a representation for

E(Y i |Xi, bi) is never specified
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Model interpretation and inferential objectives

“Subject-specific” vs. “Population-averaged”:

• “Population-averaged” model cannot incorporate theoretical

assumptions embedded in the model m(t, U i, θi) for individual

behavior

• In fact , using m as a model for E(Y i |Xi) makes no scientific

sense (although it may provide a reasonable empirical representation

of the “typical ” response pattern ) – impossible for

E(Y i |Xi) =
∫

mi(Xi, β, bi) dFb(bi) = m(Xi, β)

• In the applications here, the response is of interest because it carries

information on the θi, but average response itself is of little or no

importance =⇒ “population-averaged” model is not appropriate
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Model interpretation and inferential objectives

“Subject-specific” model =⇒ “population-averaged” model:

E(Y i|Xi) =
∫

mi(Xi, β, bi) dFb(bi)

Cov(Y i|Xi) = E{Vi(Xi, β, bi, α)|Xi} + Cov{mi(Xi, β, bi)|Xi}
• E(Y i |Xi) is complicated function of β and G =⇒ β alone does

not describe the population average

• E{Vi(Xi, β, bi, α)|Xi} = average of realization/measurement

variation over population =⇒ diagonal only if autocorrelation of

within-individual realizations negligible

• Cov{mi(Xi, β, bi)|Xi} = population variation in “inherent

trajectories ” =⇒ non-diagonal in general

• =⇒ Overall pattern of variation/covariation in the response is the

aggregate due to both sources

• I prefer “aggregate ” covariance to “within-individual ” covariance
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Break
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Inferential approaches

Reminder – summary of the two-stage model: Xi = (U ′
i, A

′
i)

′

• Stage 1 – Individual-level model :

E(Y i |Xi, bi) = E(Y i |U i, θi) = mi(U i, θi) = mi(Xi, β, bi),

Cov(Y i |Xi, bi) = Cov(Y i |U i, θi) = Vi(U i, θi, α) = Vi(Xi, β, bi, α)

• Stage 2 – Population model :

θi = d(Ai, β, bi), bi ∼ (0, G)

• Standard assumptions :

– Y i given Xi and bi multivariate normal (perhaps transformed )

=⇒ probability density function fi(yi |xi, bi; β, α)

– bi ∼ N(0, G) =⇒ density f(bi; G)

• Observed data : {(Y i, Xi), i = 1, . . . , N} = (Y , X),
(Y i, Xi) assumed independent across i
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Inferential approaches

Natural basis for inference on β, G: Maximum likelihood

• Joint density of Y given X (by independence )

f(y |x; γ, G) =
N∏

i=1

fi(yi |xi; γ, G), γ = (β′, α′)′

• fi(yi, bi |xi; γ, G) = fi(yi |xi, bi; γ)f(bi; G)

• Log-likelihood for (γ, G)

�(γ, G) = log

{
N∏

i=1

fi(yi |xi; γ, G)

}

= log

{
N∏

i=1

∫
fi(yi |xi, bi; γ) f(bi; G) dbi

}
• Involves N q−dimensional integrals
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Inferential approaches

�(γ, G) = log

{
N∏

i=1

∫
fi(yi |xi, bi; γ) f(bi; G) dbi

}

Major practical issue: These integrals are analytically intractable in

general and may be high-dimensional

• Some means of approximation of the integrals required

• Analytical approximation (the approach used historically , first by

PKists) – will discuss first

• Numerical approximation (more recent, as computational resources

have improved)
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Inferential approaches

Inference based on individual estimates: If ni ≥ r, can (in principle)

obtain individual regression estimates θ̂i

• E.g., if Vi(U i, θi, α) = σ2
eIni

can use ordinary least squares

for each i

• For fancier Vi(U i, θi, α) can use generalized (weighted ) least

squares for each i with an estimate of α substituted

• α can be estimated by “pooling ” residuals across all N individuals

• Realistically : Require ni >> r

• Described in Chapter 5 of Davidian and Giltinan (1995)

Idea: Use the θ̂i, i = 1, . . . , N , as “data ” to estimate β and G. . .
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Inferential approaches

Idea: Use the θ̂i, i = 1, . . . , N , as “data ” to estimate β and G

• Consider linear population model θi = Aiβ + Bibi

• Standard large-ni asymptotic theory =⇒

θ̂i |U i, θi
·∼ N(θi, Ci), Ci depends on θi, α

• Estimate Ci by substituting θ̂i, α̂ =⇒ θ̂i |U i, θi
·∼ N(θi, Ĉi) and

treat Ĉi as fixed

• Write as θ̂i ≈ θi + e∗
i , e∗

i |U i, θi
·∼ N(0, Ĉi)

• =⇒ Approximate “linear mixed-effects model ” for “response ” θ̂i

θ̂i ≈ Aiβ + Bibi + e∗
i , bi ∼ N(0, G), e∗

i |U i, θi
·∼ N(0, Ĉi)

• Can be fitted (estimate β, G) using standard linear mixed model

methods (treating Ĉi as fixed )
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Inferential approaches

θ̂i ≈ Aiβ + Bibi + e∗
i , bi ∼ N(0, G), e∗

i |U i, θi
·∼ N(0, Ĉi)

Fitting the “linear mixed model”:

• “Global two-stage algorithm ” (GTS ): Fit using the EM algorithm ;

see Davidian and Giltinan (1995, Chapter 5)

• Use standard linear mixed model software such as SAS proc

mixed , R function lme – requires some tweaking to handle the fact

that Ĉi is regarded as known

• Appeal to usual large-N asymptotic theory for the “linear mixed

model ” to obtain standard errors for elements of β̂, confidence

intervals for elements of β, etc (generally works well )

Common misconception: This method is often portrayed in the

literature as having no relationship to the non-linear mixed-effects model
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Inferential approaches

How does this approximate the integrals? Not readily apparent

• May view the θ̂i as approximate “sufficient statistics ” for the θi

• Change of variables in the integrals and replace fi(yi |xi, bi; γ) by

the (normal) density f(θ̂i |U i, θi; α) corresponding to the

asymptotic approximation

Remarks:

• When all ni are sufficiently large to justify the asymptotic

approximation (e.g., intensive PK studies), I like this method!

• Easy to explain to collaborators

• Gives similar answers to other analytical approximation methods

(coming up)

• Drawback : No standard software (although see my website for

R/SAS code)
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Inferential approaches

In many settings: “Rich ” individual data not available for all i

(e.g., population PK studies); i.e., ni “not large ” for some or all i

• Approximate the integrals more directly by approximating

fi(yi |xi; γ, G)

Write model with normality assumptions at both stages:

Y i = mi(Xi, β, bi) + V
1/2
i (Xi, β, bi, α) εi, bi ∼ N(0, G)

• V
1/2
i (ni × ni) such that V

1/2
i (V 1/2

i )′ = Vi

• εi |Xi, bi ∼ N(0, Ini
) (ni × 1)

• First-order Taylor series about bi = b∗
i “close” to bi, ignoring

cross-product (bi − b∗
i )εi as negligible =⇒

Y i ≈ mi(Xi, β, b∗i )−Zi(Xi, β, b∗i )b
∗
i +Zi(Xi, β, b∗

i )bi+V
1/2
i (Xi, β, b∗i , α) εi

Zi(Xi, β, b∗i ) = ∂/∂bi{mi(Xi, β, bi)}|bi = b∗
i
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Inferential approaches

Y i ≈ mi(Xi, β, b∗i )−Zi(Xi, β, b∗i )b
∗
i +Zi(Xi, β, b∗

i )bi+V
1/2
i (Xi, β, b∗i , α) εi

“First-order” method: Take b∗i = 0 (mean of bi)

• =⇒ Distribution of Y i given Xi approximately normal with

E(Y i |Xi) ≈ mi(Xi, β,0),

Cov(Y i |Xi) ≈ Zi(Xi, β,0) G Z ′
i(Xi, β,0) + Vi(Xi, β,0, α)

• =⇒ Approximate fi(yi |xi; γ, G) by a normal density with these

moments, so that �(γ, G) is in a closed form

• =⇒ Estimate (β, α, G) by maximum likelihood – because integrals

are eliminated, is a direct optimization (but still very messy. . . )

• First proposed by Beal and Sheiner in early 1980s in the context of

population PK
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Inferential approaches

“First-order” method: Software

• fo method in the Fortran package nonmem (widely used by PKists)

• SAS proc nlmixed using the method=firo option (but cannot

handle by default dependence of Vi(U i, θi, α) = Vi(Xi, β, bi, α) on

θi and thus on β, bi)

Alternative implementation: View as an approximate

“population-averaged ” model for mean and covariance

E(Y i |Xi) ≈ mi(Xi, β,0),

Cov(Y i |Xi) ≈ Zi(Xi, β,0) G Z ′
i(Xi, β,0) + Vi(Xi, β,0, α)

• =⇒ Estimate (β, α, G) by solving a set of generalized estimating

equations (GEEs; specifically, “GEE-1 ”)

• Is a different method from maximum likelihood (“GEE-2 ”)

• Software : SAS macro nlinmix with expand=zero
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Inferential approaches

Problem: These approximate moments are clearly poor approximations

to the true moments

• In particular, poor approximation to E(Y i |Xi) =⇒ biased

estimators for β

“First-order conditional methods”: Use a “better ” approximation

• Take b∗
i “closer ”to bi

• Natural choice: b̂i = mode of the posterior density

f(bi |yi, xi; γ, G) =
fi(yi |xi, bi; γ) f(bi; G)

fi(yi |xi; γ, G)

• =⇒ Approximate moments

E(Y i |Xi) ≈ mi(Xi, β, b̂i) − Zi(Xi, β, b̂i)b̂i

Cov(Y i |Xi) ≈ Zi(Xi, β, b̂i) G Z ′
i(Xi, β, b̂i) + Vi(Xi, β, b̂i, α)
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Inferential approaches

Fitting algorithms: Iterate between

(i) Update b̂i, i = 1, . . . , N , by maximizing the posterior density (or

approximation to it) with γ̂ and Ĝ substituted and held fixed

(ii) Hold the b̂i fixed and update estimation of γ and G by either

(a) Maximizing the approximate normal log-likelihood based on

treating Y i given Xi as normal with these moments, OR

(b) Solving a corresponding set of GEEs

• Usually “converges ” (although no guarantee )

Software:

• nonmem with foce option implements (ii)(a)

• R function nlme, SAS macro nlinmix with expand=blup option

implement (ii)(b)
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Inferential approaches

Standard errors, etc: For both “first-order ” approximations

• Pretend that the approximate moments are exact and use the usual

large-N asymptotic theory for maximum likelihood or GEEs

• Provides reliable inferences in problems where N is reasonably large

and the magnitude of among-individual variation is not huge

My experience:

• Even without the integration, these are nasty computational

problems , and good starting values for the parameters are required

(may have to try several sets of starting values).

• The “first-order ” approximation is too crude and should be avoided

in general (although can be a good way to get reasonable starting

values for other methods)

• The “first-order conditional ” methods often work well, are

numerically well-behaved , and yield reliable inferences
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Inferential approaches

�(γ, G) = log

{
N∏

i=1

∫
fi(yi |xi, bi; γ) f(bi; G) dbi

}

Numerical approximation methods: Approximate the integrals using

deterministic or stochastic numerical integration techniques

(q−dimensional numerical integration ) and maximize the log-likelihood

• Issue : For each iteration of the likelihood optimization algorithm,

must approximate N q-dimensional integrals

• Infeasible until recently: Numerical integration embedded repeatedly

in an optimization routine is computationally intensive

• Gets worse with larger q (the “curse of dimensionality ”)
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Inferential approaches

Deterministic techniques:

• Normality of bi =⇒ Gauss-Hermite quadrature

• Quadrature rule : Approximate an integral by a suitable weighted

average of the integrand evaluated at a q−dimensional grid of

values =⇒ accuracy increases with more grid points, but so does

computational burden

• Adaptive Gaussian quadrature : “Center ” and “scale ” the grid

about b̂i =⇒ can greatly reduce the number of grid points needed

Software: SAS proc nlmixed

• Adaptive Gaussian quadrature : The default

• Gaussian quadrature : method=gauss noad

• As before, proc nlmixed cannot handle dependence of

Vi(U i, θi, α) = Vi(Xi, β, bi, α) on θi and thus on β, bi
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Inferential approaches

�(γ, G) = log

{
N∏

i=1

∫
fi(yi |xi, bi; γ) f(bi; G) dbi

}
Stochastic techniques:

• “Brute force ” Monte Carlo integration: Represent integral for i by

B−1
B∑

b=1

fi(yi |xi, b
(b); γ),

b(b) are draws from N(0, G) (at the current estimates of γ, G)

• Can require very large B for acceptable accuracy (inefficient )

• Importance sampling : Replace this by a suitably weighted version

that is more efficient

Software: SAS proc nlmixed implements importance sampling

(method=isamp)
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Inferential approaches

My experience with SAS proc nlmixed:

• Good starting values are essential (may have to try many sets) –

starting values are required for all of β, G, α

• Could obtain starting values from an analytical approximation

method

• Practically speaking, quadrature is infeasible for q > 2 almost always

with the mechanism-based non-linear models in PK and other

applications
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Inferential approaches

Other methods: Maximize the log-likelihood via an EM algorithm

• For non-linear mixed models , the conditional expectation in the

E-step is not available in a closed form

• Monte Carlo EM algorithm : Approximate the E-step by ordinary

Monte Carlo integration

• Stochastic approximation EM algorithm : Approximate the E-step by

Monte Carlo simulation and stochastic approximation

• Software ?
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Inferential approaches

Bayesian inference : Natural approach to hierarchical models

Big picture: In the Bayesian paradigm

• View β, α, G, and bi, i = 1, . . . , N , as random parameters (on

equal footing) with prior distributions (priors for bi, i = 1, . . . , N ,

are N(0, G))

• Bayesian inference on β and G is based on their posterior

distributions

• The posterior distributions involve high-dimensional integration and

cannot be derived analytically . . .

• . . . but samples from the posterior distributions can be obtained via

Markov chain Monte Carlo (MCMC)
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Inferential approaches

Bayesian hierarchy:

• Stage 1 – Individual-level model : Assume normality

E(Y i |Xi, bi) = E(Y i |U i, θi) = mi(U i, θi) = mi(Xi, β, bi),

Cov(Y i |Xi, bi) = Cov(Y i |U i, θi) = Vi(U i, θi, α) = Vi(Xi, β, bi, α)

• Stage 2 – Population model : θi = d(Ai, β, bi), bi ∼ N(0, G)

• Stage 3 – Hyperprior : (β, α, G) ∼ f(β, α, G) = f(β)f(α)g(G)

• Joint posterior density

f(γ, G, b |y, x) =
∏N

i=1 fi(yi |xi, bi; γ) f(bi; G)f(β, α, G)
f(y |x)

;

denominator is numerator integrated wrt (γ, G, bi, i = 1, . . . , N)

• E.g., posterior for β, f(β |y, x): Integrate out α, G, bi, i = 1, . . . , N
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Inferential approaches

Estimator for β: Mode of posterior

• Uncertainty measured by spread of f(β |y, x)

• Similarly for α, G, and bi, i = 1, . . . , N

Implementation: By simulation via MCMC

• Samples from the full conditional distributions (eventually) behave

like samples from the posterior distributions

• The mode and measures of uncertainty may be calculated

empirically from these samples

• Issue : Sampling from some of the full conditionals is not entirely

straightforward because of non-linearity of m in θi and hence bi

• =⇒ “All-purpose ” software not available in general, but has been

implemented for popular m in add-ons to WinBUGS (e.g., PKBugs)
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Inferential approaches

Experience:

• With weak hyperpriors and “good ” data, inferences are very similar

to those based on maximum likelihood and first-order conditional

methods

• Convergence of the chain must be monitored carefully; “false

convergence ” can happen

• Advantage of Bayesian framework : Natural mechanism to

incorporate known constraints and prior scientific knowledge
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Inferential approaches

Inference on individuals: Follows naturally from a Bayesian perspective

• Goal : “Estimate ” bi or θi for a randomly chosen individual i from

the population

• “Borrowing strength ”: Individuals sharing common characteristics

can enhance inference

• =⇒ Natural “estimator” is the mode of the posterior f(bi |y, x) or

f(θi |y, x)

• Frequentist perspective : (γ, G) are fixed – relevant posterior is

f(bi |yi, xi; γ, G) =
fi(yi |xi, bi; γ) f(bi; G)

fi(yi |xi; γ, G)

=⇒ substitute estimates for (γ, G)

• θ̂i = d(Ai, β̂, b̂i)

• “Empirical Bayes ”
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Inferential approaches

Selecting the population model d: The foregoing is predicated on a

fixed d(Ai, β, bi)

• A key objective in many analyses (e.g., population PK) is to identify

an appropriate d(Ai, β, bi)

• Must identify elements of Ai to include in each component of

d(Ai, β, bi) and the functional form of each component

• Likelihood inference : Use nested hypothesis tests or information

criteria (AIC, BIC, etc)

• Challenging when Ai is high-dimensional. . .

• . . . Need a way of selecting among large number of variables and

functional forms in each component (still an open problem. . . )
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Inferential approaches

Selecting the population model d: Continued

• Graphical methods : Based on Bayes or empirical Bayes “estimates”

– Fit an initial population model with no covariates (elements of

Ai and obtain B/EB estimates b̂i, i = 1 . . . , N

– Plot components of b̂i against elements of Ai, look for

relationships

– Postulate and fit an updated population model d incorporating

relationships and obtain updated B/EB estimates b̂i and re-plot

– If model is adequate, plots should show haphazard scatter ;

otherwise, repeat

– Issue 1 : “Shrinkage ” of B/EB estimates could obscure

relationships (especially if bi really aren’t normally distributed )

– Issue 2 : “One-at-a-time ” assessment of relationships could miss

important features

81



Inferential approaches

Normality of bi: The assumption bi ∼ N(0, G) is standard in

mixed-effects model analysis; however

• Is it always realistic ?

• Unmeasured binary among-individual covariate systematically

associated with θi =⇒ bi has bimodal distribution

• Or a normal distribution may just not be the best model!

Heavy tails , skewness. . . )

• Consequences ?

Relaxing the normality assumption: Represent the density of bi by a

flexible form

• Estimate the density along with the model parameters

• =⇒ Insight into possible omitted covariates
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Implementation and examples

Example 1: A basic analysis – argatroban study

• Intensive PK study , N = 37 subjects assigned to different

intravenous infusion rates Di for tinf = 240 min

• tij = 30,60,90,115,160,200,240,245,250,260,275,295,320,360 min

(ni = 14)

• One compartment model

m(t, U i, θi) =
Di

eCl∗i

[
exp

{
−eCl∗i

eV ∗
i

(t − tinf)+

}
− exp

(
−eCl∗i

eV ∗
i

t

)]
θi = (Cl∗i , V ∗

i )′, U i = (Di, tinf)

x+ = 0 if x ≤ 0 and x+ = x if x > 0

• Parameterized in terms of Cl∗i = log(Cli), V ∗
i = log(Vi)

(population distributions of PK parameters likely skewed )

• No among-individual covariates Ai
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Applications

Profiles for subjects receiving 1.0 and 4.5 μg/kg-min:
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Implementation and examples

Non-linear mixed model:

• Stage 1 – Individual-level model : Yij normal with

E(Yij |U i, θi) = m(tij , U i, θi)

Cov(Y i |U i, Ai) = Vi(U i, θi, α) = σ2
e diag{m2ζ(ti1, U i, θi), . . . , m2ζ(tini

, U i, θi)}
=⇒ negligible autocorrelation , measurement error dominates

• Stage 2 – Population model

θi = β + bi, β = (β1, β2)′, bi ∼ N(0, G)

=⇒ β1, β2 represent population means of log clearance, volume;

equivalently, exp(β1), exp(β2) are population medians

=⇒ √
G11,

√
G22 ≈ coefficients of variation of clearance, volume
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Implementation and examples

Implementation: Using

• Individual estimates θ̂i found using “pooled ” generalized least

squares including estimation of ζ (customized R code) followed by

fitting the “linear mixed model ” (SAS proc mixed)

• First-order method via version 8.01 of SAS macro nlinmix with

expand=zero – fix ζ = 0.22 (estimate from above)

• First-order conditional method via version 8.01 of SAS macro

nlinmix with expand=eblup – fix ζ = 0.22

• First-order conditional method via R function nlme (estimate ζ)

• Maximum likelihood via SAS proc nlmixed with adaptive Gaussian

quadrature – does not support non-constant intra-individual variance

=⇒ “transform-both-sides ” with δ = 1 − ζ ≈ 0.75

(Y δ
ij − 1)/δ = [{m(tij , U i, θi)}δ − 1]/δ + eij , ei |U i, bi ∼ N(0, σ2

eIni
)
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Implementation and examples

Abridged code: Full code at website for Longitudinal Data Analysis

http://www.biostat.harvard.edu/∼fitzmaur/lda/

First-order method: SAS nlinmix with expand=zero

First-order conditional method: SAS nlinmix with expand=blup

%inc ’nlmm801.sas’ / nosource; * nlinmix macro;

data arg; infile ’argconc.dat’;

input obsno indiv dose time conc;

tinf=240;

t1=1; if time>tinf then t1=0; t2=tinf*(1-t1)+t1*time;

run;
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Implementation and examples

%nlinmix(data=arg,

model=%str(

logcl=beta1+b1; logv=beta2+b2; cl=exp(logcl); v=exp(logv);

predv=(dose/cl)*(1-exp(-cl*t2/v))*exp(-cl*(1-t1)*(time-tinf)/v);

),

derivs=%str( wt=1/predv**(2*0.22); ),

parms=%str(beta1=-6.0 beta2=-2.0),

stmts=%str(

class indiv;

model pseudo_conc = d_beta1 d_beta2 / noint notest solution;

random d_b1 d_b2 / subject=indiv type=un solution;

weight wt;

),

expand=zero, * or expand=eblup,

procopt=%str(maxiter=500 method=ml)

)

run;
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Implementation and examples

Abridged output: First-order method

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) indiv 0.1578

UN(2,1) indiv -0.00308

UN(2,2) indiv 0.01676

Residual 699.80

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

d_beta1 -5.4889 0.06629 401 -82.80 <.0001

d_beta2 -1.8277 0.03429 401 -53.30 <.0001
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Implementation and examples

Abridged output: First-order conditional method

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) indiv 0.1378

UN(2,1) indiv 0.005669

UN(2,2) indiv 0.004761

Residual 549.08

Solution for Fixed Effects

Standard

Effect Estimate Error DF t Value Pr > |t|

d_beta1 -5.4325 0.06212 401 -87.46 <.0001

d_beta2 -1.9256 0.02527 401 -76.19 <.0001
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Implementation and examples

First-order conditional method: R function nlme

library(nlme) # access nlme()

thedat <- read.table("argconc.dat",col.names=c(’obsno’,’indiv’,

’dose’,’time’,’conc’))

meanfunc <- function(x,b1,b2,dose){

tinf <- 240; cl <- exp(logcl); v <- exp(logv)

t1 <- x<=tinf; t2 <- tinf*(1-t1)+t1*x;

f1 <- (dose/cl)*(1-exp(-cl*t2/v))*exp(-cl*(1-t1)*(x-tinf)/v)

f1

}
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Implementation and examples

arg.mlfit <- nlme(conc ~ meanfunc(time,logcl,logv,dose),

fixed = list(logcl ~ 1,logv ~1),

random = list(logcl ~ 1,logv ~ 1),

groups = ~ indiv, data = thedat,

start = list(fixed = c(-6.0,-2.0)),

method="ML", verbose=T, weights=varPower(0.5))

Abridged output:

Nonlinear mixed-effects model fit by maximum likelihood

AIC BIC logLik

5738.429 5767.572 -2862.214

Random effects: Formula: list(b1 ~ 1, b2 ~ 1)

Level: indiv

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

b1 0.37168333 b1

b2 0.06753254 0.268 Residual 20.42295300
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Implementation and examples

Variance function:

Structure: Power of variance covariate

Formula: ~fitted(.)

Parameter estimates:

power

0.2432619

Fixed effects: list(b1 ~ 1, b2 ~ 1)

Value Std.Error DF t-value p-value

b1 -5.432546 0.06230325 437 -87.19522 0

b2 -1.917993 0.02513039 437 -76.32165 0

Correlation:

b1

b2 0.156

Number of Observations: 475

Number of Groups: 37

Estimate of sigma 20.42295
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Implementation and examples

Maximum likelihood: SAS proc nlmixed

data arg; set arg; conctrans = conc**0.75; run;

proc nlmixed data=arg;

parms beta1=-6.0 beta2=-2.0 s2b1=0.14 cb12=0.006

s2b2=0.006 s2=23.0;

logcl=beta1+b1;

logv=beta2+b2;

cl=exp(logcl);

v=exp(logv);

pred=((dose/cl)*(1-exp(-cl*t2/v))

*exp(-cl*(1-t1)*(time-tinf)/v))**0.75;

model conctrans ~ normal(pred,s2);

random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=indiv;

run;
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Implementation and examples

Abridged output:

Fit Statistics

-2 Log Likelihood 4007.8

AIC (smaller is better) 4019.8

Parameter Estimates

Standard

Parameter Estimate Error DF t Value Pr > |t|

beta1 -5.4237 0.06277 35 -86.40 <.0001

beta2 -1.9238 0.02972 35 -64.73 <.0001

s2b1 0.1411 0.03389 35 4.16 0.0002

cb12 0.006562 0.01020 35 0.64 0.5242

s2b2 0.006010 0.006141 35 0.98 0.3345

s2 192.72 13.6128 35 14.16 <.0001
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Implementation and examples

Method β1 β2 σe ζ G11 G12 G22

Indiv. est. −5.433 −1.927 23.47 0.22 0.137 6.06 6.17
(0.062) (0.026)

First-order −5.490 −1.828 26.45 – 0.158 −3.08 16.76
nlinmix (0.066) (0.034)

First-order cond. −5.432 −1.926 23.43 – 0.138 5.67 4.76
nlinmix (0.062) (0.026)

First-order cond. −5.433 −1.918 20.42 0.24 0.138 6.73 4.56
nlme (0.063) (0.025)

ML −5.424 −1.924 13.88 – 0.141 6.56 6.01

nlmixed (0.063) (0.030)

Values for G12, G22 are multiplied by 103
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Implementation and examples

Interpretation: Concentrations measured in ng/ml = 1000 μg/ml

• Median argatroban clearance ≈ 4.4 μg/ml/kg

(≈ exp(−5.43) × 1000)

• Median argatroban volume ≈ 145.1 ml/kg =⇒ ≈ 10 liters for

a 70 kg subject

• Assuming Cli, Vi approximately lognormal

– G11 ≈ √
0.14× 100 ≈ 37% coefficient of variation for clearance

– G22 =⇒ 8% CV for volume

97



Implementation and examples

Individual inference: Individual estimate (dashed) and empirical Bayes

estimate (solid)
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Implementation and examples

Example 2: A simple population PK study analysis: phenobarbital

• World-famous example

• N = 59 preterm infants treated with phenobarbital for seizures

• ni = 1 to 6 concentration measurements per infant, total of 155

• Among-infant covariates (Ai): Birth weight wi (kg), 5-minute

Apgar score δi = I[Apgar < 5]

• Multiple intravenous doses : U i = (si�, Di�), � = 1, . . . , di

• One-compartment model (principle of superposition )

m(t, U i, θi) =
∑

�:si�<t

Di�

Vi
exp

{
−Cli

Vi
(t − si�)

}
• Objectives : Characterize PK and its variation – Mean/median Cli,

Vi? Systematic associations with among-infant covariates ? Extent

of unexplained variation ?

99



Implementation and examples

Dosing history and concentrations for one infant:
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Implementation and examples

Non-linear mixed model:

• Stage 1 – Individual-level model

E(Yij |U i, θi) = m(tij , U i, θi), Cov(Y i |U i, Ai) = Vi(U i, θi, α) = σ2
e Ini

=⇒ negligible autocorrelation , measurement error dominates and

has constant variance

• Stage 2 – Population model

– Without among-infant covariates Ai

log Cli = β1 + bi1, log Vi = β2 + bi2

– With among-infant covariates Ai

log Cli = β1 + +β3wi + bi1, log Vi = β2 + +β4wi + β5δi + bi2
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Implementation and examples

Empirical Bayes estimates vs. covariates: Fit without
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Implementation and examples

Empirical Bayes estimates vs. covariates: Fit with
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Implementation and examples

Relaxing the normality assumption on bi: Represent the density of bi

by a flexible form , fit by maximum likelihood
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Extensions

Multivariate response: More than one type of response measured

longitudinally on each individual

• Objectives: Understand the relationships between the response

trajectories and the processes underlying them

• Key example: pharmacokinetic/pharmacodynamic (PK/PD) analysis

• PD – “What the drug does to the body ”

Example: Argatroban study

• In addition to drug concentrations, samples at 5-9 time points from

0 to 540 min (not necessarily the same as for concentrations) =⇒
measure activated partial thromboplastin time (aPTT)

• aPTT is the pharmacodynamic response

• Goal : Elucidate the relationships between argatroban concentration

and aPTT and among underlying PK and PD processes
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Extensions

Required: A joint model for PK and PD

• Data :

– Y PK
ij at times tPK

ij (PK concentrations)

– Y PD
ij at times tPD

ij (PD aPTT responses)

• One compartment model for PK

mPK(t, U i, θ
PK
i ) =

Di

eCl∗i

[
exp

{
eCl∗i

eV ∗
i

(t − tinf)+

}
− exp

(
−eCl∗i

eV ∗
i

t

)]
θPK

i = (Cl∗i , V ∗
i )′, U i = (Di, tinf)

• PK analysis =⇒ can obtain individual estimates θ̂
PK

i and predicted

concentrations m(tPD
ij , θ̂

PK

i )

• =⇒ plot Y PD
ij vs. m(tPD

ij , θ̂
PK

i )
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Extensions

Concentration-PD response relationship:
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Extensions

Suggests: Empirical model for concentration-aPTT response

relationship – sigmoidal “Emax model ”

aPTT = mPD(conc, θPD) = E0 +
Emax − E0

1 + EC50/conc

θPD = (E0, Emax, EC50)′

Result: Assuming measurement error dominates realization variation, so

“true ” PK concentration for i at t ≈ m(t, U i, θ
PK
i )

• Stage 1 – Individual-level model

Y PK
ij = mPK(tPK

ij , U i, θ
PK
i ) + ePK

ij

Y PD
ij = mPD{mPK(tPD

ij , U i, θ
PK
i ), θPD

i } + ePD
ij

• ePK
ij , ePD

ij mutually independent (primarily measurement error )
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Extensions

Full model: Combined responses Y i = (Y PK′
i , Y PD′

i )′

θi = (θPK′
i , θPD′

i )′ = (Cl∗i , V ∗
i , E0i, Emax,i, EC50i)′

• Stage 1 – Individual-level model

E(Y PK
ij |U i, θi) = mPK(tPK

ij , U i, θ
PK
i )

E(Y PD
ij |U i, θi) = mPD{mPK(tPD

ij , U i, θ
PK
i ), θPD

i }
Cov(Y i|U i, θi) = block diag{V PK

i (U i, θi, α
PK), V PD

i (U i, θi, α
PD)}

V PK
i (U i, θi, α

PK) = σ2
e,PKdiag[. . . , {mPK(tPK

ij , U i, θ
PK
i )}2ζP K

, . . .]

V PD
i (U i, θi, α

PD) = σ2
e,PDdiag

(
. . . , [mPD{mPK(tPD

ij , U i, θ
PK
i ), θPD

i }]2ζP D

, . . .
)

• Stage 2 – Population model

θi = β + bi, β = (β1, . . . , β5)′, bi ∼ N(0, G)
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Extensions

Time-dependent among-individual covariates: Among-individual

covariates change over time within an individual

• In principle , one could write θij for each tij ; however . . .

• Key issue : Does this make scientific sense ?

• PK : Do pharmacokinetic processes vary within an individual?

Example: Quinidine study

• Creatinine clearance, α1-acid glycoprotein concentration, etc,

change over dosing intervals

• How to incorporate dependence of Cli, Vi on α1-acid glycoprotein

concentration?
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Extensions

Data for a representative subject:

time conc. dose age weight creat. glyco.
(hours) (mg/L) (mg) (years) (kg) (ml/min) (mg/dl)

0.00 – 166 75 108 > 50 69
6.00 – 166 75 108 > 50 69

11.00 – 166 75 108 > 50 69
17.00 – 166 75 108 > 50 69
23.00 – 166 75 108 > 50 69
27.67 0.7 – 75 108 > 50 69
29.00 – 166 75 108 > 50 94
35.00 – 166 75 108 > 50 94
41.00 – 166 75 108 > 50 94
47.00 – 166 75 108 > 50 94
53.00 – 166 75 108 > 50 94
65.00 – 166 75 108 > 50 94
71.00 – 166 75 108 > 50 94
77.00 0.4 – 75 108 > 50 94

161.00 – 166 75 108 > 50 88
168.75 0.6 – 75 108 > 50 88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF
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Extensions

Population model: Standard approach in PK

• For subject i: α1-acid glycoprotein concentration likely measured

intermittently at times 0, 29, 161 hours and assumed constant over

the intervals (0,29), (29,77), (161,·) hours

• For intervals Ik, k = 1, . . . , a (a = 3 here), Aik = among-individual

covariates for tij ∈ Ik =⇒ e.g., linear model

θij = Aikβ + bi

• This population model assumes “within subject inter-interval

variation ” entirely “explained ” by changes in covariate values

• Alternatively : Nested random effects

θij = Aikβ + bi + bik, bi, bik independent
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Extensions

Multi-level models: More generally

• Nesting : E.g., responses Yikj , j = 1, . . . , nik, on several trees

(k = 1, . . . , vi) within each of several plots (i = 1, . . . , N)

θik = Aikβ + bi + bik, bi, bik independent

Missing/mismeasured covariates: Ai, U i, tij

Censored response: E.g., due to an assay quantification limit

Semiparametric models: Allow m(t, U i, θi) to depend on an

unspecified function g(t, θi)

• Flexibility , model misspecification

Clinical trial simulation: “Virtual ” subjects simulated from a

non-linear mixed-effects model for PK/PD/disease progression linked to

a clinical end-point
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Discussion

Summary:

• The non-linear mixed-effects model is now a standard statistical

framework in many areas of application

• Is appropriate when scientific interest focuses on within-individual

mechanisms/processes that can be represented by parameters in a

non-linear (often theoretical ) model for individual time course

• Free and commercial software is available, but implementation is

still complicated

• Specification of models and assumptions, particularly the population

model , is somewhat an art-form

• Current challenge : High-dimensional Ai (e.g., genomic information)

• Still plenty of methodological research to do
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Discussion

See the references on slide 3 for an extensive bibliography
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