An Introduction to Non-linear Mixed-effects Models

Marie Davidian Department of Statistics North Carolina State University

http://www.stat.ncsu.edu/~davidian

23 September 2008

Outline

- 1. Introduction
- 2. Applications
- 3. Model formulation
- 4. Model interpretation and inferential objectives

Break

- 5. Inferential approaches
- 6. Implementation and examples
- 7. Extensions
- 8. Discussion

Some references

Material in this workshop is drawn from:

- Davidian, M. and Giltinan, D.M. (1995). Nonlinear Models for Repeated Measurement Data. Chapman & Hall/CRC Press.
- Davidian, M. and Giltinan, D.M. (2003). Nonlinear models for repeated measurement data: An overview and update. *Journal of Agricultural, Biological, and Environmental Statistics* 8, 387–419.
- Davidian, M. (2009). Non-linear mixed-effects models. In Longitudinal Data Analysis, G. Fitzmaurice, M. Davidian, G. Verbeke, and G. Molenberghs (eds). Chapman & Hall/CRC Press, ch. 5, 107–141.

Shameless promotion:

Introduction

Common situation in the biosciences:

- A *continuous response* evolves over *time* (or other condition) *within individuals* from a *population* of interest
- Scientific interest focuses on *features* or *mechanisms* that underlie *individual time trajectories* of the response and how these *vary* across the population
- A *theoretical* or *empirical model* for such individual profiles, typically *non-linear* in *parameters* that may be interpreted as representing such features or mechanisms, is available
- *Repeated measurements* over time are available on each individual in a *sample* drawn from the *population*
- *Inference* on the scientific questions of interest is to be made in the context of the *model* and its *parameters*

Introduction

Non-linear mixed-effects model:

- Also known as the *hierarchical non-linear model*
- A formal *statistical framework* for this situation
- Much *statistical methodological* research in the early 1990s
- Now *widely accepted* and *used*, with applications routinely reported and commercial and free *software* available
- *Extensions* and *methodological innovations* are still ongoing

Objectives of this workshop:

- Provide an *introduction* to the formulation, utility, and implementation of non-linear mixed models
- Focus on applications in *pharmaceutical* and *health sciences* research

Pharmacokinetics (PK): "What the body does to the drug"

- One of the most *important* application areas
- The area that *inspired* much of the methodological development for non-linear mixed-effects models
- Broad goal: Understand and characterize intra-subject processes of drug absorption, distribution, metabolism and excretion (elimination) governing achieved drug concentrations
- ... and how these processes *vary* across subjects
- Critical for developing *dosing strategies*

An outstanding overview: *"Pharmacokinetics and pharmacodynamics*," by D.M. Giltinan, in *Encyclopedia of Biostatistics*, 2nd edition

PK studies in humans: Two types

- "Intensive studies"
 - *Small* number of subjects (often *healthy volunteers*)
 - *Frequent* samples over time, often following *single dose*
 - Usually *early* in drug development
 - Useful for gaining initial information on "*typical*" PK behavior in humans and for identifying an appropriate *PK model*...
- Preclinical PK studies in *animals* are generally *intensive* studies

PK studies in humans: Two types

- "Population studies"
 - Large number of subjects (heterogeneous patients)
 - Often in *later stages* of drug development or after a drug is in *routine use*
 - Haphazard samples over time, multiple dosing intervals
 - Extensive *demographical* and *physiological* characteristics
 - Useful for understanding associations between patient characteristics and PK behavior ⇒ tailored dosing recommendations

Theophylline study: 12 subjects, same oral dose (mg/kg)

Features:

- *Intensive* study
- *Similarly shaped* concentration-time profiles across subjects
- ... but peak, rise, decay *vary*
- Attributable to *inter-subject variation* in underlying PK behavior (absorption, distribution, elimination)

Standard: Represent the body by a simple system of *compartments*

• Gross simplification but extraordinarily useful...

One-compartment model with first-order absorption, elimination:

$$\frac{dA_a(t)}{dt} = -k_a A_a(t), \qquad A_a(0) = FA(0)$$

 $F = bioavailability, A_a(t) = amount at absorption site$

Concentration at $t: m(t) = \frac{A(t)}{V} = \frac{k_a DF}{V(k_a - k_e)} \{ \exp(-k_e t) - \exp(-k_a t) \},\$

 $k_e = Cl/V, V = "volume"$ of compartment, Cl = clearance

Non-Clinical Statistics 2008

One-compartment model for theophylline:

- Single "blood compartment" with fractional rates of absorption k_a and elimination k_e
- Deterministic mathematical model
- Individual PK behavior characterized by PK parameters $\widehat{\boldsymbol{\theta}} = (k_a, V, Cl)'$

By-product:

- The PK model assumes PK processes are *dose-independent*
- \implies Knowledge of the values of $\hat{\theta} = (k_a, V, Cl)'$ allows *simulation* of concentrations achieved at any time t under *different doses*
- Can be used to develop *dosing regimens*

Objectives of analysis:

- Estimate "typical" values of $\theta = (k_a, V, Cl)'$ and how they vary in the population of subjects based on the longitudinal concentration data from the sample of 12 subjects
- Must *incorporate* the (*theoretical*) PK model in an appropriate statistical model (somehow...)

Argatroban study: Another *intensive* study

- Administered by *intravenous infusion* for 4 hours (240 min)
- N = 37 subjects assigned to different *constant infusion rates*
- One-compartment model with constant intravenous infusion rate $D \ (\mu g/kg/min)$ for duration $t_{inf} = 240 min$

$$m(t) = \frac{D}{Cl} \left[\exp\left\{ -\frac{Cl}{V} (t - t_{\inf})_+ \right\} - \exp\left(-\frac{Cl}{V} t \right) \right], \quad \boldsymbol{\theta} = (Cl, V)'$$
$$x_+ = 0 \text{ if } x \le 0 \text{ and } x_+ = x \text{ if } x > 0$$

Objectives of analysis:

- Estimate "typical" values of $\theta = (Cl, V)'$ and how they vary in the population of subjects
- Understand relationship between achieved concentrations and a clinical or other response (*pharmacodynamics*; more later...)

Profiles for 4 subjects receiving 4.5 μ **g/kg-min:**

Quinidine population study: N = 136 patients undergoing treatment with oral quinidine for atrial fibrillation or arrhythmia

- Demographical/physiological characteristics: Age, weight, height, ethnicity/race, smoking status, ethanol abuse, congestive heart failure, creatinine clearance, α₁-acid glycoprotein concentration, ...
- Samples taken over *multiple dosing intervals* \implies (dose time, amount) = (s_{ℓ}, D_{ℓ}) for the ℓ th dose interval
- Standard assumption: "Principle of superposition" => multiple doses are "additive"
- One compartment model gives expression for concentration at time t...

For a subject not yet at a steady state:

$$A_{a}(s_{\ell}) = A_{a}(s_{\ell-1}) \exp\{-k_{a}(s_{\ell} - s_{\ell-1})\} + D_{\ell},$$

$$m(s_{\ell}) = m(s_{\ell-1}) \exp\{-k_{e}(s_{\ell} - s_{\ell-1})\} + A_{a}(s_{\ell-1}) \frac{k_{a}}{V(k_{a} - k_{e})}$$

$$\times \Big[\exp\{-k_{e}(s_{\ell} - s_{\ell-1})\} - \exp\{-k_{a}(s_{\ell} - s_{\ell-1})\} \Big].$$

$$m(t) = m(s_{\ell}) \exp\{-k_{e}(t-s_{\ell})\} + A_{a}(s_{\ell}) \frac{k_{a}}{V(k_{a}-k_{e})}$$
$$\times \Big[\exp\{-k_{e}(t-s_{\ell})\} - \exp\{-k_{a}(t-s_{\ell})\}\Big], \quad s_{\ell} < t < s_{\ell+1}$$
$$k_{e} = Cl/V, \quad \boldsymbol{\theta} = (k_{a}, V, Cl)'$$

Objective of analysis: Characterize *typical values* of and *variation* in $\theta = (k_a, V, Cl)'$ across the population and elucidate *systematic associations* between θ and *patient characteristics*

Non-Clinical Statistics 2008

time (hours)	conc. (mg/L)	dose (mg)	age (years)	weight (kg)	creat. (ml/min)	glyco. (mg/dl)
0.00	_	166	75	108	> 50	69
6.00	_	166	75	108	> 50	69
11.00	_	166	75	108	> 50	69
17.00	_	166	75	108	> 50	69
23.00	_	166	75	108	> 50	69
27.67	0.7	_	75	108	> 50	69
29.00	_	166	75	108	> 50	94
35.00	_	166	75	108	> 50	94
41.00	_	166	75	108	> 50	94
47.00	_	166	75	108	> 50	94
53.00	_	166	75	108	> 50	94
65.00	_	166	75	108	> 50	94
71.00	_	166	75	108	> 50	94
77.00	0.4	_	75	108	> 50	94
161.00	_	166	75	108	> 50	88
168.75	0.6	_	75	108	> 50	88

Data for a representative subject:

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF

Toxicokinetics: *Physiologically-based pharmacokinetic* (*PBPK*) models

- PK of *environmental*, *chemical* agents; studies often in *animals*
- N animals exposed, *repeated concentrations* over time on each
- More "*realistic*" representation of the body (e.g., *organ, tissue compartments*)
- System of differential equations *cannot* be solved *analytically*
- Lots of PK parameters, some measurable, some unknown: Compartment volumes V, partition coefficients P, flow rates F, metabolic parameters V_{max}, K_m, etc

Objectives of analysis:

- Characterize in particular *metabolic mechanisms* (V_{max} , K_m) and how these *vary* in the population
- Understand relationship between *metabolic processes* and *toxicities*

$$\begin{split} C_{\rm art} &= \frac{F_{\rm card}C_{\rm ven} + F_{\rm alv}C_{\rm inh}}{F_{\rm card} + F_{\rm alv}/P_{\rm blood/air}}, \quad C_{\rm ven} = \sum_{s} \frac{F_{s}C_{s}}{F_{\rm card}} \\ C_{\rm exh} &= (1-\delta)\frac{C_{\rm art}}{P_{\rm blood/air}} + \delta C_{\rm inh} \\ \frac{dC_{s}}{dt} &= \frac{F_{s}}{V_{s}}\left(C_{\rm art} - \frac{C_{s}}{P_{s/{\rm blood}}}\right), \quad s = {\rm wp, pp, fat} \\ \frac{dC_{\rm liv}}{dt} &= \frac{F_{\rm liv}}{V_{\rm liv}}\left(C_{\rm art} - \frac{C_{\rm liv}}{P_{\rm liv/{\rm blood}}}\right) - R_{\rm liv} \ (s = {\rm liv}), \\ R_{\rm liv} &= \frac{V_{\rm max}C_{\rm liv}}{V_{\rm liv}}, \end{split}$$

NC STATE UNIVERSITY

HIV dynamics: Human immunodeficiency virus (HIV), attacks the *immune system*

- *Broad goal*: Characterize *mechanisms* underlying the *interaction* between HIV and the immune system over time governing *disease progression* and the effects of *anti-retroviral treatments* (ART)
- *Typical study*: *N* subjects, *repeated measurements* on *viral load* (virologic status), *CD4+ T cell count* (immunologic status) over time (possibly on/off ART)
- Compartmental representation of mechanisms taking place within an infected subject
- System of (*deterministic*) *nonlinear ordinary differential equations*;
 → *viral load*, CD4+ T cell count, etc, at any time

Simple model for within-subject HIV dynamics:

Differential equations:

$$\begin{aligned} \dot{T}_{1} &= \lambda_{1} - d_{1}T_{1} - \{1 - \epsilon_{1}U(t)\}k_{1}V_{I}T_{1} \\ \dot{T}_{2} &= \lambda_{2} - d_{2}T_{2} - \{1 - f\epsilon_{1}U(t)\}k_{2}V_{I}T_{2} \\ \dot{T}_{1}^{*} &= \{1 - \epsilon_{1}U(t)\}k_{1}V_{I}T_{1} - \delta T_{1}^{*} - m_{2}ET_{1}^{*} \\ \dot{T}_{2}^{*} &= \{1 - f\epsilon_{1}U(t)\}k_{2}V_{I}T_{2} - \delta T_{2}^{*} - m_{2}ET_{2}^{*} \\ \dot{V}_{I} &= \{1 - \epsilon_{2}U(t)\}10^{3}N_{T}\delta(T_{1}^{*} + T_{2}^{*}) - cV_{I} \\ &-\{1 - \epsilon_{1}U(t)\}\rho_{1}10^{3}k_{1}T_{1}V_{I} - \{1 - f\epsilon_{1}U(t)\}\rho_{2}10^{3}k_{2}T_{2}V_{I} \\ \dot{V}_{NI} &= \epsilon_{2}U(t)10^{3}N_{T}\delta(T_{1}^{*} + T_{2}^{*}) - cV_{NI} \\ \dot{E} &= \lambda_{E} + \frac{b_{E}(T_{1}^{*} + T_{2}^{*})}{(T_{1}^{*} + T_{2}^{*}) + K_{b}}E - \frac{d_{E}(T_{1}^{*} + T_{2}^{*})}{(T_{1}^{*} + T_{2}^{*}) + K_{d}}E - \delta_{E}E \end{aligned}$$

• $\boldsymbol{\theta} = (\lambda_1, d_1, \epsilon_1, k_1, \ldots)'$ plus initial conditions

- Observable: *CD4 count* = $T_1 + T_1^*$, *viral load* = $V_I + V_{NI}$
- U(t) = ART input at $t (0 \le U(t) \le 1, 0 = off, 1 = on)$

Objectives of analysis: Characterize *typical values* of and *variation* in θ across the population, elucidate *systematic associations* between θ and *patient characteristics*, *simulate* disease progression under different U(t)

Summary: Common *themes*

- A *response* (or responses) evolves over time (e.g., *concentration* in PK)
- Interest focuses on *underlying mechanisms/processes* taking place within an individual leading to response trajectories and how these vary across the population
- A (usually *deterministic*) *model* is available representing mechanisms explicitly by scientifically meaningful model *parameters*
- Mechanisms cannot be *observed directly*
- → Inference on mechanisms must be based on *repeated* measurements of the response over time on each of a sample of N individuals from the population

Other application areas:

- Stability testing
- Agriculture
- Forestry
- Dairy science
- Cancer dynamics
- Many more ...

For definiteness: We will use *PK* as a running example

Non-linear mixed effects model: *Embed* the (*deterministic*) *model* describing *individual* trajectories in a *statistical model*

- Formalizes knowledge and *assumptions* about *variation* in responses and mechanisms *within* and *among* individuals
- Provides a framework for *inference* based on *repeated measurement* data from N individuals
- For simplicity: Focus on univariate response (= drug concentration in PK); some discussion of multivariate response at the end

Basic set-up: N individuals from a population of interest, $i = 1, \ldots, N$

• For individual i, observe n_i measurements of the response

 $Y_{i1}, Y_{i2}, \ldots, Y_{in_i}$ at times $t_{i1}, t_{i2}, \ldots, t_{in_i}$

• I.e., for individual i, Y_{ij} at time t_{ij} , $j = 1, \ldots, n_i$

Within-individual conditions of observation: For individual i, $oldsymbol{U}_i$

- Theophylline: $U_i = D_i$ = oral dose for i at time 0 (mg/kg)
- Argatroban: $U_i = (D_i, t_{inf}) = infusion rate and duration for i$
- Quinidine: For subject i observed over d_i dosing intervals, U_i has elements $(s_{i\ell}, D_{i\ell})'$, $\ell = 1, \ldots, d_i$
- *HIV dynamics*: U_i is continuous function $U_i(t)$ with subject *i*'s known treatment status at any time t
- U_i are "within-individual covariates" needed to describe response-time relationship at the individual level

Individual characteristics: For individual i, A_i

- Age, weight, ethnicity, smoking status, etc...
- For now: Elements of A_i do not change over observation period (will discuss changing elements later)
- A_i are "among-individual covariates" relevant only to how individuals differ but are not needed to describe response-time relationship at individual level

Observed data: $(\mathbf{Y}'_i, \mathbf{X}'_i)'$, i = 1, ..., N, assumed independent across i

- $Y_i = (Y_{i1}, \dots, Y_{in_i})'$
- $X_i = (U'_i, A'_i)' =$ combined within- and among-individual covariates (for brevity later)

Basic model: A two-stage hierarchy

Stage 1 – Individual-level model:

$$Y_{ij} = m(t_{ij}, \boldsymbol{U}_i, \boldsymbol{\theta}_i) + e_{ij}, \ j = 1, \dots, n_i, \ \boldsymbol{\theta}_i \ (r \times 1)$$

• E.g., for *theophylline* $(F \equiv 1)$

$$m(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}) = \frac{k_{ai}D_{i}}{V_{i}(k_{ai} - Cl_{i}/V_{i})} \{\exp(-Cl_{i}t/V_{i}) - \exp(-k_{ai}t)\}$$

$$\boldsymbol{\theta}_{i} = (k_{ai}, V_{i}, Cl_{i})' = (\theta_{i1}, \theta_{i2}, \theta_{i3})', \ r = \ 3, \ \boldsymbol{U}_{i} = D_{i}$$

Assume $e_{ij} = Y_{ij} - m(t_{ij}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i})$ satisfy $E(e_{ij} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}) = 0$
 $\implies E(Y_{ij} \mid \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}) = m(t_{ij}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i})$ for each j

• Standard assumption:
$$e_{ij}$$
 and hence Y_{ij} are conditionally normally distributed (on U_i , θ_i)

• More shortly. . .

Non-Clinical Statistics 2008

Stage 2 – Population model:

$$\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \ i = 1, \dots, N, \ (r \times 1)$$

- d is r-dimensional function describing *relationship* between θ_i and A_i in terms of ...
- β ($p \times 1$) fixed parameter ("fixed effects")
- $\boldsymbol{b}_i \ (q \times 1)$ "random effects"
- Characterizes how elements of θ_i vary across individual due to
 - Systematic associations with A_i (modeled via β)
 - "Unexplained variation" in the population (represented by b_i)
- Usual assumptions :

 $E(\boldsymbol{b}_i | \boldsymbol{A}_i) = E(\boldsymbol{b}_i) = \boldsymbol{0}$ and $Cov(\boldsymbol{b}_i | \boldsymbol{A}_i) = Cov(\boldsymbol{b}_i) = G$, $\boldsymbol{b}_i \sim N(\boldsymbol{0}, G)$

Stage 2 – Population model:

$$\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \ i = 1, \dots, N$$

Example: Quinidine, $\theta_i = (k_{ai}, V_i, Cl_i)'$ (r = 3)

•
$$A_i = (w_i, \delta_i, a_i)'$$
, $w_i = \text{weight}$, $a_i = \text{age}$,
 $\delta_i = I$ (creatinine clearance > 50 ml/min)

•
$$\boldsymbol{b}_i = (b_{i1}, b_{i2}, b_{i3})' \ (q = 3), \ \boldsymbol{\beta} = (\beta_1, \dots, \beta_7)' \ (p = 7)$$

$$k_{ai} = \theta_{i1} = d_1(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i) = \exp(\beta_1 + b_{i1}),$$

$$V_i = \theta_{i2} = d_2(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i) = \exp(\beta_2 + \beta_4 w_i + b_{i2}),$$

$$Cl_i = \theta_{i3} = d_3(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i) = \exp(\beta_3 + \beta_5 w_i + \beta_6 \delta_i + \beta_7 a_i + b_{i3}),$$

- *Positivity* of k_{ai}, V_i, Cl_i enforced
- If $b_i \sim N(\mathbf{0}, G)$, k_{ai}, V_i, Cl_i are each *lognormally distributed* in the population

Non-Clinical Statistics 2008

Stage 2 – Population model:

$$\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \ i = 1, \dots, N$$

Example: Quinidine, continued, $\theta_i = (k_{ai}, V_i, Cl_i)'$ (r = 3)

- "Are elements of θ_i fixed or random effects?"
- "Unexplained variation" in one component of θ_i "small" relative to others no associated random effect, e.g., r = 3, q = 2

$$k_{ai} = \exp(\beta_1 + b_{i1})$$

 $V_i = \exp(\beta_2 + \beta_4 w_i)$ (all population variation due to weight)

$$Cl_i = \exp(\beta_3 + \beta_5 w_i + \beta_6 \delta_i + \beta_7 a_i + b_{i3})$$

• An approximation – usually biologically implausible; used for parsimony, numerical stability

Stage 2 – Population model:

$$\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \ i = 1, \dots, N$$

- Allows *non-linear* (in β and b_i) specifications for elements of θ_i
- May be more appropriate than *linear* specifications (*positivity* requirements, *skewed* distributions)

Some accounts: Restrict to *linear* specification

$$\boldsymbol{\theta}_i = A_i \boldsymbol{\beta} + B_i \boldsymbol{b}_i$$

- $A_i (r \times p)$ "design matrix" depending on elements of A_i
- B_i $(r \times q)$ typically 0s and 1s (*identity* matrix if r = q)
- Mainly in the *statistical literature*

Stage 2 – Linear population model:

$$\boldsymbol{\theta}_i = A_i \boldsymbol{\beta} + B_i \boldsymbol{b}_i$$

Example: Quinidine, continued

• Reparameterize in terms of $\boldsymbol{\theta}_i = (k_{ai}^*, V_i^*, Cl_i^*)'$, $k_{ai}^* = \log(k_{ai})$, $V_i^* = \log(V_i)$, and $Cl_i^* = \log(Cl_i)$ (r = 3)

$$k_{ai}^{*} = \beta_{1} + b_{i1},$$

$$V_{i}^{*} = \beta_{2} + \beta_{4}w_{i} + b_{i2},$$

$$Cl_{i}^{*} = \beta_{3} + \beta_{5}w_{i} + \beta_{6}\delta_{i} + \beta_{7}a_{i} + b_{i3}$$

$$A_{i} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & w_{i} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & w_{i} & \delta_{i} & a_{i} \end{pmatrix}, \quad B_{i} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Non-Clinical Statistics 2008

Within-individual considerations: Complete the Stage 1 individual-level model

- Assumptions on the distribution of $oldsymbol{Y}_i$ given $oldsymbol{U}_i$ and $oldsymbol{ heta}_i$
- Focus on a single individual i observed under conditions \boldsymbol{U}_i
- Y_{ij} at times t_{ij} viewed as *intermittent* observations on a *stochastic process*

$$Y_i(t, \boldsymbol{U}_i) = m(t, \boldsymbol{U}_i, \boldsymbol{\theta}_i) + e_i(t, \boldsymbol{U}_i)$$

 $E\{e_i(t, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = 0, \quad E\{Y_i(t, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = m(t, \boldsymbol{U}_i, \boldsymbol{\theta}_i) \text{ for all } t$

•
$$Y_{ij} = Y_i(t_{ij}, \boldsymbol{U}_i)$$
, $e_{ij} = e_i(t_{ij}, \boldsymbol{U}_i)$

"Deviation" process e_i(t, U_i) represents all sources of variation acting within an individual causing a realization of Y_i(t, U_i) to deviate from the "smooth" trajectory m(t, U_i, θ_i)
Conceptualization:

Conceptual interpretation:

- Solid line: m(t, U_i, θ_i) represents "inherent tendency" for i's response to evolve over time; depends on i's "inherent characteristics" θ_i
- Dashed line: Actual realization of the response fluctuates about solid line because $m(t, U_i, \theta_i)$ is a simplification of complex truth
- *Symbols*: Actual, *intermittent measurements* of the dashed line *deviate* from the dashed line due to *measurement error*

Result: Two sources of intra-individual variation

- "Realization deviation"
- Measurement error variation
- m(t, U_i, θ_i) is the *average* of *all possible realizations* of measured response trajectory that could be observed on i

To formalize: $e_i(t, U_i) = e_{R,i}(t, U_i) + e_{M,i}(t, U_i)$

• Within-individual *stochastic process*

 $Y_{i}(t, \boldsymbol{U}_{i}) = m(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}) + e_{R,i}(t, \boldsymbol{U}_{i}) + e_{M,i}(t, \boldsymbol{U}_{i})$ $E\{e_{R,i}(t, \boldsymbol{U}_{i}) | \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\} = E\{e_{M,i}(t, \boldsymbol{U}_{i}) | \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}\} = 0$ $\Longrightarrow Y_{ij} = Y_{i}(t_{ij}, \boldsymbol{U}_{i}), \ e_{R,i}(t_{ij}, \boldsymbol{U}_{i}) = e_{R,ij}, \ e_{M,i}(t_{ij}, \boldsymbol{U}_{i}) = e_{M,ij}$ $Y_{ij} = m(t_{ij}, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}) + \underbrace{e_{R,ij} + e_{M,ij}}_{e_{ij}}$

$$e_{R,i} = (e_{R,i1}, \dots, e_{R,in_i})', \quad e_{M,i} = (e_{M,i1}, \dots, e_{M,in_i})'$$

- $e_{R,i}(t, U_i) =$ "realization deviation process"
- $e_{M,i}(t, U_i) =$ "measurement error deviation process"
- Assumptions on $e_{R,i}(t, U_i)$ and $e_{M,i}(t, U_i)$ lead to a model for $Cov(e_i | U_i, \theta_i)$ and hence $Cov(Y_i | U_i, \theta_i)$

Conceptualization:

Realization deviation process:

 Natural to expect e_{R,i}(t, U_i) and e_{R,i}(s, U_i) at times t and s to be positively correlated, e.g.,

 $\operatorname{corr}\{e_{R,i}(t, \boldsymbol{U}_i), e_{R,i}(s, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = \exp(-\rho |t-s|), \quad \rho \ge 0$

• Assume variation of realizations about $m(t, U_i, \theta_i)$ are of *similar* magnitude over time and individuals, e.g.,

 $\mathsf{Var}\{e_{R,i}(t, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = \sigma_R^2 \ge 0 \quad (\textit{constant} \text{ for all } t)$

• Or assume variation depends on $m(t, \boldsymbol{U}_i, \boldsymbol{\theta}_i)$, e.g.,

$$\operatorname{Var}\{e_{R,i}(t, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = \sigma_R^2 \{m(t, \boldsymbol{U}_i, \boldsymbol{\theta}_i)\}^{2\eta}, \quad \eta > 0$$

• *Result*: Assumptions imply a *covariance model* $(n_i \times n_i)$

 $\mathsf{Cov}(\boldsymbol{e}_{R,i} \,|\, \boldsymbol{U})_i, \boldsymbol{\theta}_i) = V_{R,i}(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}_R), \quad \boldsymbol{\alpha}_R = (\sigma_R^2, \rho)' \text{ or } \boldsymbol{\alpha}_R = (\sigma_R^2, \rho, \eta)'$

Conceptualization:

Measurement error deviation process:

• Measuring devices commit *haphazard errors* \implies

 $\operatorname{corr} \{ e_{M,i}(t, \boldsymbol{U}_i), e_{M,i}(s, \boldsymbol{U}_i) \, | \, \boldsymbol{U}_i, \boldsymbol{\theta}_i \} = 0 \text{ for all } t > s$

• Assume magnitude of errors is *similar* regardless of level, e.g.,

 $\operatorname{Var}\{e_{M,i}(t, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = \sigma_M^2 \ge 0 \quad (\text{constant for all } t)$

• Or assume magnitude changes with level; often approximated under assumption $Var\{e_{R,i}(t, U_i) | U_i, \theta_i\} \ll Var\{e_{M,i}(t, U_i) | U_i, \theta_i\}$

$$\operatorname{Var}\{e_{M,i}(t, \boldsymbol{U}_i) \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i\} = \sigma_M^2 \{m(t, \boldsymbol{U}_i, \boldsymbol{\theta}_i)\}^{2\zeta}, \quad \zeta > 0$$

• Result: Assumptions imply a covariance model $(n_i \times n_i)$ (diagonal matrix)

$$\mathsf{Cov}(\boldsymbol{e}_{M,i} \,|\, \boldsymbol{U})_i, \boldsymbol{\theta}_i) = V_{M,i}(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}_R), \quad \boldsymbol{\alpha}_M = \sigma_M^2 \text{ or } \boldsymbol{\alpha}_M = (\sigma_M^2, \zeta)'$$

Combining:

• Standard assumption: $e_{R,i}(t, U_i)$ and $e_{M,i}(t, U_i)$ are independent

$$\begin{aligned} \mathsf{Cov}(\boldsymbol{e}_i \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i) &= \; \mathsf{Cov}(\boldsymbol{e}_{R,i} \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i) + \mathsf{Cov}(\boldsymbol{e}_{M,i} \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i) \\ &= \; V_{R,i}(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}_R) + V_{M,i}(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}_M) \\ &= \; V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) \end{aligned}$$

$$\boldsymbol{\alpha} = (\boldsymbol{\alpha}_R', \boldsymbol{\alpha}_M')'$$

• This assumption *may or may not* be realistic

Practical considerations: Quite *complex intra-individual covariance models* can result from *faithful consideration* of the situation...

• ... But may be *difficult to implement*

Standard model simplifications: One or more might be adopted

● *Negligible* measurement error ⇒

$$V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = V_{R,i}(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}_R)$$

- The t_{ij} may be at widely spaced intervals \implies autocorrelation among $e_{R,ij}$ negligible $\implies V_i(U_i, \theta_i, \alpha)$ is diagonal
- $\operatorname{Var}\{e_{R,i}(t, U_i) | U_i, \theta_i\} \ll \operatorname{Var}\{e_{M,i}(t, U_i) | U_i, \theta_i\} \Longrightarrow$ measurement error is *dominant source*
- Simplifications should be *justifiable* in the context at hand

Note: All of these considerations apply to *any* mixed-effects model formulation, not just *non-linear* ones!

Routine assumption: $V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = \sigma_e^2 I_{n_i} \ \boldsymbol{\alpha} = \sigma_e^2$

- Often made by "*default*" with little consideration of the *assumptions it implies*!
- Assumes *autocorrelation* among $e_{R,ij}$ *negligible*
- Assumes constant variances, i.e., $Var\{e_{R,i}(t, U_i) | U_i, \theta_i\} = \sigma_R^2$ and $Var\{e_{M,i}(t, U_i) | U_i, \theta_i\} = \sigma_M^2 \implies \sigma_e^2 = \sigma_R^2 + \sigma_M^2$
- If measurement error is negligible $\Longrightarrow \sigma_e^2 = \sigma_R^2$
- If $\operatorname{Var}\{e_{R,i}(t, U_i) | U_i, \theta_i\} \ll \operatorname{Var}\{e_{M,i}(t, U_i) | U_i, \theta_i\}$ $\implies \sigma_e \approx \sigma_M^2$

Standard assumptions in PK:

- Sampling times are *sufficiently far apart* that *autocorrelation* among $e_{R,ij}$ *negligible* (*not* always justifiable!)
- Measurement error *dominates* realization error so that

 $\operatorname{Var}(e_{R,ij} | \boldsymbol{U}_i, \boldsymbol{\theta}_i) << \operatorname{Var}(e_{M,ij} | \boldsymbol{U}_i, \boldsymbol{\theta}_i)$

(often *reasonable*)

• Measurement error variance *depends on level*, approximated by

$$\operatorname{Var}(e_{M,ij} \mid \boldsymbol{U}_i, \boldsymbol{\theta}_i) = \sigma_M^2 \{ m(t_{ij}, \boldsymbol{U}_i, \boldsymbol{\theta}_i) \}^{2\zeta}$$

so that $V_i(U_i, \theta_i, \alpha) = V_{M,i}(U_i, \theta_i, \alpha_M)$ is *diagonal* with these elements (*almost always* the case)

Distributional assumption:

• Specification for $E(\boldsymbol{Y}_i \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i) = \boldsymbol{m}_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i)$,

 $\boldsymbol{m}_i(\boldsymbol{U}_i,\boldsymbol{\theta}_i) = \{m(t_{i1},\boldsymbol{U}_i,\boldsymbol{\theta}_i),\ldots,m(t_{in_i},\boldsymbol{U}_i,\boldsymbol{\theta}_i)\}' \quad (n_i \times 1)$

- Specification for $Cov(\boldsymbol{Y}_i | \boldsymbol{U}_i, \boldsymbol{\theta}_i) = V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha})$
- Standard assumption: Distribution of Y_i given U_i and θ_i is multivariate normal with these moments
- Alternatively, model on the log scale $\implies Y_{ij}$ are conditionally (on U_i and θ_i) lognormal
- In what follows: Y_{ij} denotes the response on the original or transformed scale as appropriate

Summary of the two-stage model: Recall $oldsymbol{X}_i = (oldsymbol{U}_i', oldsymbol{A}_i')'$

- Substitute *population model* for θ_i in *individual-level model*
- Stage 1 Individual-level model:

 $E(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{b}_i) = E(\mathbf{Y}_i | \mathbf{U}_i, \mathbf{\theta}_i) = \mathbf{m}_i(\mathbf{U}_i, \mathbf{\theta}_i) = \mathbf{m}_i(\mathbf{X}_i, \mathbf{\beta}, \mathbf{b}_i),$ $\mathsf{Cov}(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{b}_i) = \mathsf{Cov}(\mathbf{Y}_i | \mathbf{U}_i, \mathbf{\theta}_i) = V_i(\mathbf{U}_i, \mathbf{\theta}_i, \mathbf{\alpha}) = V_i(\mathbf{X}_i, \mathbf{\beta}, \mathbf{b}_i, \mathbf{\alpha})$

• Stage 2 – Population model:

$$\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \quad \boldsymbol{b}_i \sim (\boldsymbol{0}, G)$$

- Standard assumptions :
 - \boldsymbol{Y}_i given \boldsymbol{X}_i and \boldsymbol{b}_i multivariate normal (perhaps transformed)
 - $\boldsymbol{b}_i \sim N(\boldsymbol{0}, G)$
 - All of these can be *relaxed*

"Subject-specific" model:

- Individual behavior is *modeled explicitly* at Stage 1, depending on *individual-specific* parameters θ_i that have *scientifically meaningful interpretation*
- Models for $E(\mathbf{Y}_i | \mathbf{U}_i, \boldsymbol{\theta}_i)$ and $\boldsymbol{\theta}_i$, and hence $E(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{b}_i)$, are specified . . .
- ... in contrast to a "population-averaged" model, where a model for $E(\mathbf{Y}_i | \mathbf{X}_i)$ is specified directly (more on this momentarily...)
- This is consistent with the *inferential objectives*
- Interest is in "typical" values of θ_i and how they vary in the population...

Main inferential objectives: May be *formalized* in terms of the model

- For a specific *population model* d, the *fixed effect* β characterizes the *mean* or *median* ("*typical*") value of θ_i in the population (perhaps for individuals with given value of A_i)
- \implies Determining an *appropriate population model* $d(A_i, \beta, b_i)$ and inference on *elements* of β in it is of *central interest*
- Variation of θ_i across individuals beyond that attributable to systematic associations with among-individual covariates A_i is described by G ("unexplained variation")
- \implies Inference on G is of interest (in particular, *diagonal elements*)

Additional inferential objectives: In some contexts

- Inference on θ_i and/or $m(t_0, U_i, \theta_i)$ at some specific time t_0 for i = 1, ..., N or for *future individuals* is of interest
- *Example*: "*Individualized*" dosing in PK
- The model is a natural framework for "*borrowing strength*" across similar individuals (more later)

"Subject-specific" vs. "Population-averaged":

- The non-linear mixed model is a "subject-specific" model \implies Interest is in "typical" values of individual-specific parameters (mechanisms), θ_i , and how they vary in the population
- A "population-averaged" model describes the "typical" response pattern (averaged over individuals in the population), $E(Y_i | X_i)$, and the overall variation in response patterns about it, $Cov(Y_i | X_i)$
- In a "population-averaged" model, individual-specific behavior is not acknowledged; rather, it is "averaged out" in advance, i.e.,

$$E(\boldsymbol{Y}_i | \boldsymbol{X}_i) = \int E(\boldsymbol{Y}_i | \boldsymbol{X}_i, \boldsymbol{b}_i) dF_b(\boldsymbol{b}_i)$$

 $\implies E(\mathbf{Y}_i | \mathbf{X}_i) \text{ is specified } \frac{directly}{i}; \text{ a representation for} \\ E(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{b}_i) \text{ is } \frac{never}{i} \text{ specified}$

"Subject-specific" vs. "Population-averaged":

- "Population-averaged" model cannot incorporate theoretical assumptions embedded in the model $m(t, U_i, \theta_i)$ for individual behavior
- In fact, using m as a model for E(Y_i | X_i) makes no scientific sense (although it may provide a reasonable empirical representation of the "typical" response pattern) impossible for

$$E(\boldsymbol{Y}_i | \boldsymbol{X}_i) = \int \boldsymbol{m}_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i) \, dF_b(\boldsymbol{b}_i) = m(\boldsymbol{X}_i, \boldsymbol{\beta})$$

 In the applications here, the response is of interest because it carries information on the θ_i, but average response itself is of little or no importance ⇒ "population-averaged" model is not appropriate

"Subject-specific" model \implies "population-averaged" model:

$$E(\boldsymbol{Y}_i|\boldsymbol{X}_i) = \int \boldsymbol{m}_i(\boldsymbol{X}_i,\boldsymbol{\beta},\boldsymbol{b}_i) dF_b(\boldsymbol{b}_i)$$

 $\mathsf{Cov}(\boldsymbol{Y}_i|\boldsymbol{X}_i) = E\{V_i(\boldsymbol{X}_i,\boldsymbol{\beta},\boldsymbol{b}_i,\boldsymbol{\alpha})|\boldsymbol{X}_i\} + \mathsf{Cov}\{\boldsymbol{m}_i(\boldsymbol{X}_i,\boldsymbol{\beta},\boldsymbol{b}_i)|\boldsymbol{X}_i\}$

- $E(\mathbf{Y}_i | \mathbf{X}_i)$ is *complicated* function of $\boldsymbol{\beta}$ and $G \Longrightarrow \boldsymbol{\beta}$ alone *does not* describe the population average
- E{V_i(X_i, β, b_i, α)|X_i} = average of realization/measurement variation over population ⇒ diagonal only if autocorrelation of within-individual realizations negligible
- $Cov\{m_i(X_i, \beta, b_i) | X_i\} = population variation in "inherent trajectories" <math>\implies$ non-diagonal in general
- \implies Overall pattern of variation/covariation in the response is the aggregate due to both sources
- I prefer "aggregate" covariance to "within-individual" covariance

Break

Reminder – summary of the two-stage model: $X_i = (U'_i, A'_i)'$

• Stage 1 – Individual-level model:

 $E(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{b}_i) = E(\mathbf{Y}_i | \mathbf{U}_i, \mathbf{\theta}_i) = \mathbf{m}_i(\mathbf{U}_i, \mathbf{\theta}_i) = \mathbf{m}_i(\mathbf{X}_i, \mathbf{\beta}, \mathbf{b}_i),$ $\mathsf{Cov}(\mathbf{Y}_i | \mathbf{X}_i, \mathbf{b}_i) = \mathsf{Cov}(\mathbf{Y}_i | \mathbf{U}_i, \mathbf{\theta}_i) = V_i(\mathbf{U}_i, \mathbf{\theta}_i, \mathbf{\alpha}) = V_i(\mathbf{X}_i, \mathbf{\beta}, \mathbf{b}_i, \mathbf{\alpha})$

• Stage 2 – Population model:

$$\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \quad \boldsymbol{b}_i \sim (\boldsymbol{0}, G)$$

- Standard assumptions :
 - $\mathbf{Y}_i \text{ given } \mathbf{X}_i \text{ and } \mathbf{b}_i \text{ multivariate normal (perhaps transformed)}$ $\implies \text{probability density function } f_i(\mathbf{y}_i \,|\, \mathbf{x}_i, \mathbf{b}_i; \, \boldsymbol{\beta}, \boldsymbol{\alpha})$

$$- \mathbf{b}_i \sim N(\mathbf{0}, G) \Longrightarrow \text{density } f(\mathbf{b}_i; G)$$

• Observed data: $\{(\boldsymbol{Y}_i, \boldsymbol{X}_i), i = 1, ..., N\} = (\boldsymbol{Y}, \boldsymbol{X}), (\boldsymbol{Y}_i, \boldsymbol{X}_i)$ assumed *independent* across i

Natural basis for inference on β , G: Maximum likelihood

• Joint density of Y given X (by independence)

$$f(\boldsymbol{y} | \boldsymbol{x}; \boldsymbol{\gamma}, G) = \prod_{i=1}^{N} f_i(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\gamma}, G), \quad \boldsymbol{\gamma} = (\boldsymbol{\beta}', \boldsymbol{\alpha}')'$$

•
$$f_i(\boldsymbol{y}_i, \boldsymbol{b}_i | \boldsymbol{x}_i; \boldsymbol{\gamma}, G) = f_i(\boldsymbol{y}_i | \boldsymbol{x}_i, \boldsymbol{b}_i; \boldsymbol{\gamma}) f(\boldsymbol{b}_i; G)$$

• Log-likelihood for $(\boldsymbol{\gamma}, G)$

$$\ell(\boldsymbol{\gamma}, G) = \log \left\{ \prod_{i=1}^{N} f_i(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\gamma}, G) \right\}$$
$$= \log \left\{ \prod_{i=1}^{N} \int f_i(\boldsymbol{y}_i | \boldsymbol{x}_i, \boldsymbol{b}_i; \boldsymbol{\gamma}) f(\boldsymbol{b}_i; G) d\boldsymbol{b}_i \right\}$$

• Involves N q-dimensional integrals

$$\ell(\boldsymbol{\gamma}, G) = \log \left\{ \prod_{i=1}^{N} \int f_i(\boldsymbol{y}_i \,|\, \boldsymbol{x}_i, \boldsymbol{b}_i; \, \boldsymbol{\gamma}) \, f(\boldsymbol{b}_i; \, G) \, d\boldsymbol{b}_i \right\}$$

Major practical issue: These integrals are *analytically intractable* in general and may be *high-dimensional*

- Some means of *approximation* of the integrals required
- Analytical approximation (the approach used historically, first by PKists) – will discuss first
- *Numerical approximation* (more recent, as computational resources have *improved*)

Inference based on individual estimates: If $n_i \ge r$, can (in principle) obtain individual regression estimates $\hat{\theta}_i$

- E.g., if $V_i(U_i, \theta_i, \alpha) = \sigma_e^2 I_{n_i}$ can use ordinary least squares for each i
- For fancier $V_i(U_i, \theta_i, \alpha)$ can use generalized (weighted) least squares for each i with an estimate of α substituted
- α can be estimated by "pooling" residuals across all N individuals
- *Realistically*: Require $n_i >> r$
- Described in Chapter 5 of Davidian and Giltinan (1995)

Idea: Use the $\widehat{\theta}_i$, $i = 1, \dots, N$, as "data" to estimate β and G...

Idea: Use the $\widehat{\theta}_i$, i = 1, ..., N, as "*data*" to estimate β and G

- Consider *linear population model* $\boldsymbol{\theta}_i = A_i \boldsymbol{\beta} + B_i \boldsymbol{b}_i$
- Standard large- n_i asymptotic theory \implies

 $\widehat{\boldsymbol{\theta}}_i \,|\, \boldsymbol{U}_i, \boldsymbol{\theta}_i \stackrel{.}{\sim} N(\boldsymbol{\theta}_i, C_i), \quad C_i \text{ depends on } \boldsymbol{\theta}_i, \boldsymbol{\alpha}$

- Estimate C_i by substituting $\widehat{\theta}_i$, $\widehat{\alpha} \implies \widehat{\theta}_i | U_i, \theta_i \stackrel{\cdot}{\sim} N(\theta_i, \widehat{C}_i)$ and treat \widehat{C}_i as *fixed*
- Write as $\widehat{\theta}_i \approx \theta_i + e_i^*$, $e_i^* \mid U_i, \theta_i \stackrel{.}{\sim} N(\mathbf{0}, \widehat{C}_i)$
- \implies Approximate "linear mixed-effects model" for "response" $\widehat{\theta}_i$

 $\widehat{\boldsymbol{\theta}}_i \approx A_i \boldsymbol{\beta} + B_i \boldsymbol{b}_i + \boldsymbol{e}_i^*, \quad \boldsymbol{b}_i \sim N(\mathbf{0}, G), \quad \boldsymbol{e}_i^* \mid \boldsymbol{U}_i, \boldsymbol{\theta}_i \stackrel{\cdot}{\sim} N(\mathbf{0}, \widehat{C}_i)$

• Can be fitted (estimate β , G) using standard linear mixed model methods (treating \hat{C}_i as fixed)

 $\widehat{\boldsymbol{\theta}}_i \approx A_i \boldsymbol{\beta} + B_i \boldsymbol{b}_i + \boldsymbol{e}_i^*, \quad \boldsymbol{b}_i \sim N(\mathbf{0}, G), \quad \boldsymbol{e}_i^* \mid \boldsymbol{U}_i, \boldsymbol{\theta}_i \stackrel{\cdot}{\sim} N(\mathbf{0}, \widehat{C}_i)$

Fitting the "linear mixed model":

- "*Global two-stage algorithm*" (*GTS*): Fit using the *EM algorithm*; see Davidian and Giltinan (1995, Chapter 5)
- Use standard linear mixed model software such as SAS proc mixed, R function lme – requires some tweaking to handle the fact that C_i is regarded as known
- Appeal to usual large-N asymptotic theory for the "linear mixed model" to obtain standard errors for elements of β, confidence intervals for elements of β, etc (generally works well)

Common misconception: This method is often portrayed in the literature as having *no relationship* to the non-linear mixed-effects model

How does this approximate the integrals? Not *readily apparent*

- May view the $\widehat{m{ heta}}_i$ as approximate "sufficient statistics" for the $m{ heta}_i$
- Change of variables in the integrals and replace $f_i(\boldsymbol{y}_i | \boldsymbol{x}_i, \boldsymbol{b}_i; \boldsymbol{\gamma})$ by the (normal) density $f(\widehat{\boldsymbol{\theta}}_i | \boldsymbol{U}_i, \boldsymbol{\theta}_i; \boldsymbol{\alpha})$ corresponding to the asymptotic approximation

Remarks:

- When all n_i are sufficiently large to justify the asymptotic approximation (e.g., intensive PK studies), I like this method!
- *Easy to explain* to collaborators
- Gives *similar answers* to other analytical approximation methods (coming up)
- Drawback: No standard software (although see my website for R/SAS code)

In many settings: "*Rich*" individual data *not available* for all i (e.g., *population* PK studies); i.e., n_i "*not large*" for some or all i

 Approximate the integrals more directly by approximating f_i(y_i | x_i; γ, G)

Write model with normality assumptions at both stages:

$$\boldsymbol{Y}_i = \boldsymbol{m}_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i) + V_i^{1/2}(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i, \boldsymbol{\alpha}) \boldsymbol{\epsilon}_i, \quad \boldsymbol{b}_i \sim N(\boldsymbol{0}, G)$$

•
$$V_i^{1/2}$$
 $(n_i \times n_i)$ such that $V_i^{1/2} (V_i^{1/2})' = V_i$

- $\boldsymbol{\epsilon}_i \mid \boldsymbol{X}_i, \boldsymbol{b}_i \sim N(\boldsymbol{0}, I_{n_i}) \ (n_i \times 1)$
- First-order *Taylor series* about $b_i = b_i^*$ "close" to b_i , *ignoring* cross-product $(b_i b_i^*)\epsilon_i$ as *negligible* \Longrightarrow

$$\begin{split} \boldsymbol{Y}_i &\approx \boldsymbol{m}_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i^*) - Z_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i^*) \boldsymbol{b}_i^* + Z_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i^*) \boldsymbol{b}_i + V_i^{1/2}(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i^*, \boldsymbol{\alpha}) \boldsymbol{\epsilon}_i \\ &Z_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i^*) = \partial/\partial \boldsymbol{b}_i \{ \boldsymbol{m}_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i) \} |_{\boldsymbol{b}_i = \boldsymbol{b}_i^*} \end{split}$$

 $\boldsymbol{Y}_{i} \approx \boldsymbol{m}_{i}(\boldsymbol{X}_{i},\boldsymbol{\beta},\boldsymbol{b}_{i}^{*}) - Z_{i}(\boldsymbol{X}_{i},\boldsymbol{\beta},\boldsymbol{b}_{i}^{*})\boldsymbol{b}_{i}^{*} + Z_{i}(\boldsymbol{X}_{i},\boldsymbol{\beta},\boldsymbol{b}_{i}^{*})\boldsymbol{b}_{i} + V_{i}^{1/2}(\boldsymbol{X}_{i},\boldsymbol{\beta},\boldsymbol{b}_{i}^{*},\boldsymbol{\alpha})\boldsymbol{\epsilon}_{i}$

"First-order" method: Take $b_i^* = 0$ (mean of b_i)

• \implies Distribution of $oldsymbol{Y}_i$ given $oldsymbol{X}_i$ approximately normal with

 $E(\mathbf{Y}_i | \mathbf{X}_i) \approx \mathbf{m}_i(\mathbf{X}_i, \boldsymbol{\beta}, \mathbf{0}),$ $\mathsf{Cov}(\mathbf{Y}_i | \mathbf{X}_i) \approx Z_i(\mathbf{X}_i, \boldsymbol{\beta}, \mathbf{0}) G Z'_i(\mathbf{X}_i, \boldsymbol{\beta}, \mathbf{0}) + V_i(\mathbf{X}_i, \boldsymbol{\beta}, \mathbf{0}, \boldsymbol{\alpha})$

- \implies Approximate $f_i(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\gamma}, G)$ by a normal density with these moments, so that $\ell(\boldsymbol{\gamma}, G)$ is in a closed form
- \implies Estimate (β, α, G) by *maximum likelihood* because integrals are eliminated, is a *direct optimization* (but still *very messy*...)
- First proposed by Beal and Sheiner in early 1980s in the context of *population PK*

"First-order" method: Software

- fo method in the Fortran package nonmem (*widely used* by PKists)
- SAS proc nlmixed using the method=firo option (but *cannot* handle by default dependence of $V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = V_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i, \boldsymbol{\alpha})$ on $\boldsymbol{\theta}_i$ and thus on $\boldsymbol{\beta}, \boldsymbol{b}_i$)

Alternative implementation: View as an *approximate "population-averaged"* model for mean and covariance

 $E(\boldsymbol{Y}_i | \boldsymbol{X}_i) \approx \boldsymbol{m}_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{0}),$

 $\operatorname{Cov}(\boldsymbol{Y}_i \,|\, \boldsymbol{X}_i) \approx Z_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{0}) \, G \, Z_i'(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{0}) + V_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{0}, \boldsymbol{\alpha})$

- \implies Estimate (β, α, G) by solving a set of *generalized estimating* equations (GEEs; specifically, "*GEE-1*")
- Is a *different method* from maximum likelihood ("GEE-2")
- *Software*: SAS macro nlinmix with expand=zero

Problem: These *approximate moments* are clearly *poor approximations* to the true moments

• In particular, *poor approximation* to $E(\mathbf{Y}_i \,|\, \mathbf{X}_i) \Longrightarrow$ *biased estimators* for β

"First-order conditional methods": Use a "better" approximation

• Take \boldsymbol{b}_i^* "closer" to \boldsymbol{b}_i

• Natural choice: $\widehat{m{b}}_i = \textit{mode}$ of the *posterior density*

$$f(\boldsymbol{b}_i | \boldsymbol{y}_i, \boldsymbol{x}_i; \boldsymbol{\gamma}, G) = \frac{f_i(\boldsymbol{y}_i | \boldsymbol{x}_i, \boldsymbol{b}_i; \boldsymbol{\gamma}) f(\boldsymbol{b}_i; G)}{f_i(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\gamma}, G)}$$

• \implies Approximate moments

$$E(\mathbf{Y}_{i} | \mathbf{X}_{i}) \approx \mathbf{m}_{i}(\mathbf{X}_{i}, \boldsymbol{\beta}, \widehat{\mathbf{b}}_{i}) - Z_{i}(\mathbf{X}_{i}, \boldsymbol{\beta}, \widehat{\mathbf{b}}_{i})\widehat{\mathbf{b}}_{i}$$

$$\mathsf{Cov}(\mathbf{Y}_{i} | \mathbf{X}_{i}) \approx Z_{i}(\mathbf{X}_{i}, \boldsymbol{\beta}, \widehat{\mathbf{b}}_{i}) G Z_{i}'(\mathbf{X}_{i}, \boldsymbol{\beta}, \widehat{\mathbf{b}}_{i}) + V_{i}(\mathbf{X}_{i}, \boldsymbol{\beta}, \widehat{\mathbf{b}}_{i}, \boldsymbol{\alpha})$$

Fitting algorithms: *Iterate* between

- (i) Update \hat{b}_i , i = 1, ..., N, by maximizing the *posterior density* (or *approximation* to it) with $\hat{\gamma}$ and \hat{G} substituted and held fixed
- (ii) Hold the \hat{b}_i fixed and *update* estimation of γ and G by *either*
 - (a) *Maximizing* the approximate *normal log-likelihood* based on treating Y_i given X_i as normal with these moments, *OR*
 - (b) *Solving* a corresponding set of *GEEs*
 - Usually "converges" (although no guarantee)

Software:

- nonmem with foce option implements (ii)(a)
- R function nlme, SAS macro nlinmix with expand=blup option implement (ii)(b)

Standard errors, etc: For *both "first-order*" approximations

- *Pretend* that the *approximate moments* are *exact* and use the *usual large-N asymptotic theory* for maximum likelihood or GEEs
- Provides *reliable inferences* in problems where N is *reasonably large* and the magnitude of *among-individual variation* is not huge

My experience:

- Even without the integration, these are *nasty computational* problems, and good starting values for the parameters are required (may have to try several sets of starting values).
- The "*first-order*" approximation is *too crude* and should be *avoided* in general (although can be a good way to get reasonable *starting values* for other methods)
- The "*first-order conditional*" methods often work well, are numerically *well-behaved*, and yield *reliable inferences*

$$\ell(\boldsymbol{\gamma}, G) = \log \left\{ \prod_{i=1}^{N} \int f_i(\boldsymbol{y}_i \,|\, \boldsymbol{x}_i, \boldsymbol{b}_i; \, \boldsymbol{\gamma}) \, f(\boldsymbol{b}_i; \, G) \, d\boldsymbol{b}_i \right\}$$

Numerical approximation methods: Approximate the integrals using deterministic or stochastic numerical integration techniques (q-dimensional numerical integration) and maximize the log-likelihood

- Issue: For each iteration of the likelihood optimization algorithm, must approximate N q-dimensional integrals
- Infeasible until recently: Numerical integration embedded repeatedly in an optimization routine is computationally intensive
- Gets *worse* with *larger* q (the "*curse of dimensionality*")

Deterministic techniques:

- Normality of $b_i \Longrightarrow$ Gauss-Hermite quadrature
- Quadrature rule: Approximate an integral by a suitable weighted average of the integrand evaluated at a q−dimensional grid of values ⇒ accuracy increases with more grid points, but so does computational burden
- Adaptive Gaussian quadrature: "Center" and "scale" the grid about $\widehat{b}_i \Longrightarrow$ can greatly reduce the number of grid points needed

Software: SAS proc nlmixed

- Adaptive Gaussian quadrature: The default
- Gaussian quadrature: method=gauss noad
- As before, proc nlmixed *cannot handle* dependence of $V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = V_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i, \boldsymbol{\alpha})$ on $\boldsymbol{\theta}_i$ and thus on $\boldsymbol{\beta}$, \boldsymbol{b}_i

$$\ell(\boldsymbol{\gamma}, G) = \log \left\{ \prod_{i=1}^{N} \int f_i(\boldsymbol{y}_i \,|\, \boldsymbol{x}_i, \boldsymbol{b}_i; \, \boldsymbol{\gamma}) \, f(\boldsymbol{b}_i; \, G) \, d\boldsymbol{b}_i \right\}$$

Stochastic techniques:

• "Brute force" Monte Carlo integration: Represent integral for i by

$$B^{-1}\sum_{b=1}^{B} f_i(\boldsymbol{y}_i \,|\, \boldsymbol{x}_i, \boldsymbol{b}^{(b)};\, \boldsymbol{\gamma}),$$

 $m{b}^{(b)}$ are draws from $N(m{0},G)$ (at the current estimates of $m{\gamma},G$)

- Can require *very large B* for acceptable accuracy (*inefficient*)
- *Importance sampling*: Replace this by a *suitably weighted* version that is more efficient

Software: SAS proc nlmixed implements *importance sampling* (method=isamp)
My experience with SAS proc nlmixed:

- Good starting values are essential (may have to try many sets) starting values are required for all of β, G, α
- Could obtain starting values from an *analytical approximation method*
- Practically speaking, quadrature is *infeasible* for q > 2 almost always with the *mechanism-based* non-linear models in PK and other applications

Other methods: Maximize the log-likelihood via an *EM algorithm*

- For *non-linear mixed models*, the conditional expectation in the *E-step* is not available in a *closed form*
- *Monte Carlo EM algorithm*: Approximate the E-step by ordinary Monte Carlo integration
- Stochastic approximation EM algorithm: Approximate the E-step by Monte Carlo simulation and stochastic approximation
- Software?

Bayesian inference : Natural approach to *hierarchical models*

Big picture: In the *Bayesian paradigm*

- View β, α, G, and b_i, i = 1,..., N, as random parameters (on equal footing) with prior distributions (priors for b_i, i = 1,..., N, are N(0,G))
- Bayesian inference on *β* and *G* is based on their *posterior distributions*
- The posterior distributions involve *high-dimensional integration* and *cannot* be derived analytically
- ... but *samples* from the posterior distributions can be obtained via *Markov chain Monte Carlo* (MCMC)

Bayesian hierarchy:

• *Stage 1 – Individual-level model*: Assume *normality*

 $E(\boldsymbol{Y}_i | \boldsymbol{X}_i, \boldsymbol{b}_i) = E(\boldsymbol{Y}_i | \boldsymbol{U}_i, \boldsymbol{\theta}_i) = \boldsymbol{m}_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i) = \boldsymbol{m}_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i),$ $\mathsf{Cov}(\boldsymbol{Y}_i | \boldsymbol{X}_i, \boldsymbol{b}_i) = \mathsf{Cov}(\boldsymbol{Y}_i | \boldsymbol{U}_i, \boldsymbol{\theta}_i) = V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = V_i(\boldsymbol{X}_i, \boldsymbol{\beta}, \boldsymbol{b}_i, \boldsymbol{\alpha})$

- Stage 2 Population model: $\boldsymbol{\theta}_i = \boldsymbol{d}(\boldsymbol{A}_i, \boldsymbol{\beta}, \boldsymbol{b}_i), \ \boldsymbol{b}_i \sim N(\boldsymbol{0}, G)$
- Stage 3 Hyperprior: $(\boldsymbol{\beta}, \boldsymbol{\alpha}, G) \sim f(\boldsymbol{\beta}, \boldsymbol{\alpha}, G) = f(\boldsymbol{\beta})f(\boldsymbol{\alpha})g(G)$
- Joint posterior density

$$f(\gamma, G, \boldsymbol{b} | \boldsymbol{y}, \boldsymbol{x}) = \frac{\prod_{i=1}^{N} f_i(\boldsymbol{y}_i | \boldsymbol{x}_i, \boldsymbol{b}_i; \boldsymbol{\gamma}) f(\boldsymbol{b}_i; G) f(\boldsymbol{\beta}, \boldsymbol{\alpha}, G)}{f(\boldsymbol{y} | \boldsymbol{x})};$$

denominator is numerator integrated wrt $(\gamma, G, \boldsymbol{b}_i, i = 1, \dots, N)$

• E.g., *posterior* for β , $f(\beta | \boldsymbol{y}, \boldsymbol{x})$: Integrate out $\boldsymbol{\alpha}, G, \boldsymbol{b}_i, i = 1, \dots, N$

Non-Clinical Statistics 2008

Estimator for β : *Mode* of posterior

- Uncertainty measured by spread of $f(\pmb{\beta}\,|\,\pmb{y},\pmb{x})$
- Similarly for $\boldsymbol{\alpha}$, G, and \boldsymbol{b}_i , $i=1,\ldots,N$

Implementation: By *simulation* via MCMC

- Samples from the *full conditional distributions* (eventually) behave like samples from the posterior distributions
- The *mode* and measures of uncertainty may be calculated *empirically* from these samples
- Issue: Sampling from some of the full conditionals is not entirely straightforward because of non-linearity of m in θ_i and hence b_i
- \implies "All-purpose" software not available in general, but has been implemented for popular m in add-ons to WinBUGS (e.g., PKBugs)

Experience:

- With weak hyperpriors and "good" data, inferences are very similar to those based on maximum likelihood and first-order conditional methods
- *Convergence* of the chain must be monitored carefully; *"false convergence"* can happen
- Advantage of Bayesian framework: Natural mechanism to incorporate known constraints and prior scientific knowledge

Inference on individuals: Follows naturally from a Bayesian perspective

- Goal: "Estimate" b_i or θ_i for a randomly chosen individual i from the population
- "*Borrowing strength*": Individuals sharing common characteristics can enhance inference
- \implies Natural "estimator" is the *mode* of the posterior $f(b_i | y, x)$ or $f(\theta_i | y, x)$
- Frequentist perspective: (γ, G) are fixed relevant posterior is

$$f(\boldsymbol{b}_i | \boldsymbol{y}_i, \boldsymbol{x}_i; \boldsymbol{\gamma}, G) = \frac{f_i(\boldsymbol{y}_i | \boldsymbol{x}_i, \boldsymbol{b}_i; \boldsymbol{\gamma}) f(\boldsymbol{b}_i; G)}{f_i(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\gamma}, G)}$$

 \implies substitute estimates for (γ, G)

•
$$\widehat{\boldsymbol{\theta}}_i = \boldsymbol{d}(\boldsymbol{A}_i, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{b}}_i)$$

• "Empirical Bayes"

Selecting the population model d: The foregoing is predicated on a fixed $d(A_i, \beta, b_i)$

- A key objective in many analyses (e.g., *population* PK) is to *identify* an appropriate $d(A_i, \beta, b_i)$
- Must identify *elements* of A_i to include in each component of $d(A_i, \beta, b_i)$ and the *functional form* of each component
- Likelihood inference: Use nested hypothesis tests or information criteria (AIC, BIC, etc)
- Challenging when A_i is *high-dimensional*...
- ... Need a way of *selecting* among large number of variables and functional forms in each component (*still an open problem*...)

Selecting the population model *d***:** Continued

- Graphical methods: Based on Bayes or empirical Bayes "estimates"
 - Fit an *initial* population model with *no covariates* (elements of A_i and obtain B/EB estimates \hat{b}_i , i = 1..., N
 - Plot components of $\widehat{m{b}}_i$ against elements of $m{A}_i$, look for relationships
 - Postulate and fit an *updated* population model d incorporating *relationships* and obtain updated B/EB estimates \hat{b}_i and *re-plot*
 - If model is adequate, plots should show *haphazard scatter*; otherwise, *repeat*
 - *Issue 1*: "*Shrinkage*" of B/EB estimates could obscure relationships (especially if b_i really *aren't normally distributed*)
 - *Issue 2*: "One-at-a-time" assessment of relationships could miss important features

Normality of b_i : The assumption $b_i \sim N(\mathbf{0}, G)$ is *standard* in mixed-effects model analysis; *however*

- Is it *always realistic*?
- Unmeasured binary among-individual covariate systematically associated with $\theta_i \Longrightarrow b_i$ has bimodal distribution
- Or a *normal* distribution may just *not* be the best model!
 Heavy tails, *skewness*...)
- Consequences?

Relaxing the normality assumption: Represent the *density* of b_i by a *flexible form*

- Estimate the *density* along with the *model parameters*
- *Insight* into possible *omitted covariates*

Example 1: A basic analysis – *argatroban study*

- Intensive PK study, N = 37 subjects assigned to different intravenous infusion rates D_i for $t_{inf} = 240$ min
- $t_{ij} = 30,60,90,115,160,200,240,245,250,260,275,295,320,360 \min(n_i = 14)$
- One compartment model

$$m(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}) = \frac{D_{i}}{e^{Cl_{i}^{*}}} \left[\exp\left\{-\frac{e^{Cl_{i}^{*}}}{e^{V_{i}^{*}}}(t - t_{\inf})_{+}\right\} - \exp\left(-\frac{e^{Cl_{i}^{*}}}{e^{V_{i}^{*}}}t\right) \right]$$
$$\boldsymbol{\theta}_{i} = (Cl_{i}^{*}, V_{i}^{*})', \quad \boldsymbol{U}_{i} = (D_{i}, t_{\inf})$$
$$x_{+} = 0 \text{ if } x \leq 0 \text{ and } x_{+} = x \text{ if } x > 0$$

- Parameterized in terms of $Cl_i^* = \log(Cl_i)$, $V_i^* = \log(V_i)$ (population distributions of PK parameters likely skewed)
- No among-individual covariates A_i

Applications

Profiles for subjects receiving 1.0 and 4.5 μ g/kg-min:

Non-linear mixed model:

• Stage $1 - Individual-level model: Y_{ij} normal with$

$$E(Y_{ij} | \boldsymbol{U}_i, \boldsymbol{\theta}_i) = m(t_{ij}, \boldsymbol{U}_i, \boldsymbol{\theta}_i)$$

 $\mathsf{Cov}(\boldsymbol{Y}_i \,|\, \boldsymbol{U}_i, \boldsymbol{A}_i) = V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = \sigma_e^2 \operatorname{diag}\{m^{2\zeta}(t_{i1}, \boldsymbol{U}_i, \boldsymbol{\theta}_i), \dots, m^{2\zeta}(t_{in_i}, \boldsymbol{U}_i, \boldsymbol{\theta}_i)\}$

→ *negligible autocorrelation*, measurement error *dominates*

• Stage 2 – Population model

$$\boldsymbol{\theta}_i = \boldsymbol{\beta} + \boldsymbol{b}_i, \quad \boldsymbol{\beta} = (\beta_1, \beta_2)', \quad \boldsymbol{b}_i \sim N(\mathbf{0}, G)$$

 $\implies \beta_1, \beta_2$ represent *population means* of log clearance, volume; equivalently, $\exp(\beta_1), \exp(\beta_2)$ are *population medians*

 $\implies \sqrt{G_{11}}, \sqrt{G_{22}} \approx coefficients of variation of clearance, volume$

Implementation: Using

- Individual estimates $\hat{\theta}_i$ found using "pooled" generalized least squares including estimation of ζ (customized R code) followed by fitting the "linear mixed model" (SAS proc mixed)
- *First-order* method via version 8.01 of SAS macro nlinmix with expand=zero fix $\zeta = 0.22$ (estimate from above)
- First-order conditional method via version 8.01 of SAS macro nlinmix with expand=eblup fix $\zeta = 0.22$
- *First-order conditional* method via R function nlme (estimate ζ)
- Maximum likelihood via SAS proc nlmixed with adaptive Gaussian quadrature does not support non-constant intra-individual variance \implies "transform-both-sides" with $\delta = 1 \zeta \approx 0.75$

$$(Y_{ij}^{\delta}-1)/\delta = [\{m(t_{ij}, \boldsymbol{U}_i, \boldsymbol{\theta}_i)\}^{\delta} - 1]/\delta + e_{ij}, \quad \boldsymbol{e}_i \mid \boldsymbol{U}_i, \boldsymbol{b}_i \sim N(\boldsymbol{0}, \sigma_e^2 I_{n_i})$$

Non-Clinical Statistics 2008

Abridged code: Full code at website for Longitudinal Data Analysis http://www.biostat.harvard.edu/~fitzmaur/lda/

First-order method: SAS nlinmix with expand=zero
First-order conditional method: SAS nlinmix with expand=blup

%inc 'nlmm801.sas' / nosource; * nlinmix macro;

```
data arg; infile 'argconc.dat';
    input obsno indiv dose time conc;
    tinf=240;
    t1=1; if time>tinf then t1=0; t2=tinf*(1-t1)+t1*time;
run;
```

```
%nlinmix(data=arg,
  model=%str(
     logcl=beta1+b1; logv=beta2+b2; cl=exp(logcl); v=exp(logv);
     predv=(dose/cl)*(1-exp(-cl*t2/v))*exp(-cl*(1-t1)*(time-tinf)/v);
   ),
   derivs=%str( wt=1/predv**(2*0.22); ),
   parms = \% str(beta1 = -6.0 beta2 = -2.0),
   stmts=%str(
      class indiv;
      model pseudo_conc = d_beta1 d_beta2 / noint notest solution;
      random d_b1 d_b2 / subject=indiv type=un solution;
      weight wt;
    ),
   expand=zero, * or expand=eblup,
   procopt=%str(maxiter=500 method=ml)
run;
```

Abridged output: *First-order method*

Covariance	Estimates	
Cov Parm	Subject	Estimate
UN(1,1)	indiv	0.1578
UN(2,1)	indiv	-0.00308
UN(2,2)	indiv	0.01676
Residual		699.80

	Solution for	r Fixed Effe	cts		
Effect	Estimate	Error	DF	t Value	Pr > t
d_beta1	-5.4889	0.06629	401	-82.80	<.0001
d_beta2	-1.8277	0.03429	401	-53.30	<.0001

Abridged output: First-order conditional method

Covariance	Estimates	
Cov Parm	Subject	Estimate
UN(1,1)	indiv	0.1378
UN(2,1)	indiv	0.005669
UN(2,2)	indiv	0.004761
Residual		549.08

	Solution for	r Fixed Effe	cts		
		Standar	rd		
Effect	Estimate	Error	DF	t Value	Pr > t
d_beta1	-5.4325	0.06212	401	-87.46	<.0001
d_beta2	-1.9256	0.02527	401	-76.19	<.0001

First-order conditional method: R function nlme

```
library(nlme) # access nlme()
```

```
meanfunc <- function(x,b1,b2,dose){
   tinf <- 240; cl <- exp(logcl); v <- exp(logv)
   t1 <- x<=tinf; t2 <- tinf*(1-t1)+t1*x;
   f1 <- (dose/cl)*(1-exp(-cl*t2/v))*exp(-cl*(1-t1)*(x-tinf)/v)
   f1
}</pre>
```

```
arg.mlfit <- nlme(conc ~ meanfunc(time,logcl,logv,dose),
fixed = list(logcl ~ 1,logv ~1),
random = list(logcl ~ 1,logv ~ 1),
groups = ~ indiv, data = thedat,
start = list(fixed = c(-6.0,-2.0)),
method="ML", verbose=T, weights=varPower(0.5))
```

Abridged output:

```
Nonlinear mixed-effects model fit by maximum likelihood
AIC BIC logLik
5738.429 5767.572 -2862.214
```

```
Random effects: Formula: list(b1 ~ 1, b2 ~ 1)
Level: indiv
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
b1 0.37168333 b1
b2 0.06753254 0.268 Residual 20.42295300
```

NC STATE UNIVERSITY

```
Variance function:
 Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
    power
0.2432619
Fixed effects: list(b1 ~ 1, b2 ~ 1)
       Value Std.Error DF t-value p-value
b1 -5.432546 0.06230325 437 -87.19522
                                              0
b2 -1.917993 0.02513039 437 -76.32165
                                              \mathbf{O}
 Correlation:
   b1
b2 0.156
Number of Observations: 475
Number of Groups: 37
Estimate of sigma 20.42295
```

```
Maximum likelihood: SAS proc nlmixed
data arg; set arg; conctrans = conc**0.75; run;
proc nlmixed data=arg;
   parms beta1=-6.0 beta2=-2.0 s2b1=0.14 cb12=0.006
         s2b2=0.006 s2=23.0;
   logcl=beta1+b1;
   logv=beta2+b2;
   cl=exp(logcl);
   v=exp(logv);
   pred=((dose/cl)*(1-exp(-cl*t2/v))
               *exp(-cl*(1-t1)*(time-tinf)/v))**0.75;
   model conctrans ~ normal(pred,s2);
   random b1 b2 ~ normal([0,0],[s2b1,cb12,s2b2]) subject=indiv;
run;
```

Abridged output:

Fit Statistics

-2 Log Likelihood	4007.8
AIC (smaller is better)	4019.8

Parameter Estimates

		Standard			
Parameter	Estimate	Error	DF	t Value	Pr > t
beta1	-5.4237	0.06277	35	-86.40	<.0001
beta2	-1.9238	0.02972	35	-64.73	<.0001
s2b1	0.1411	0.03389	35	4.16	0.0002
cb12	0.006562	0.01020	35	0.64	0.5242
s2b2	0.006010	0.006141	35	0.98	0.3345
s2	192.72	13.6128	35	14.16	<.0001

Method	eta_1	eta_2	σ_{e}	ζ	G_{11}	G_{12}	G_{22}
Indiv. est.	-5.433 (0.062)	-1.927 (0.026)	23.47	0.22	0.137	6.06	6.17
First-order nlinmix	—5.490 (0.066)	-1.828 (0.034)	26.45	_	0.158	-3.08	16.76
First-order cond. nlinmix	-5.432 (0.062)	-1.926 (0.026)	23.43	_	0.138	5.67	4.76
First-order cond. nlme	-5.433 (0.063)	-1.918 (0.025)	20.42	0.24	0.138	6.73	4.56
ML	-5.424	-1.924	13.88	_	0.141	6.56	6.01
nlmixed	(0.063)	(0.030)					

Values for G_{12} , G_{22} are multiplied by 10^3

Interpretation: Concentrations measured in ng/ml = 1000 μ g/ml

- Median argatroban clearance \approx 4.4 μ g/ml/kg ($\approx \exp(-5.43) \times 1000$)
- *Median* argatroban *volume* \approx 145.1 ml/kg \implies \approx 10 liters for a 70 kg subject
- Assuming Cl_i , V_i approximately lognormal
 - $G_{11} \approx \sqrt{0.14} \times 100 \approx 37\%$ coefficient of variation for clearance

$$- G_{22} \implies 8\%$$
 CV for *volume*

Individual inference: *Individual estimate* (dashed) and *empirical Bayes estimate* (solid)

Example 2: A simple *population PK study* analysis: *phenobarbital*

- *World-famous* example
- N = 59 preterm infants treated with *phenobarbital* for *seizures*
- $n_i = 1$ to 6 concentration measurements per infant, total of 155
- Among-infant covariates (A_i) : Birth weight w_i (kg), 5-minute Apgar score $\delta_i = I[Apgar < 5]$
- Multiple intravenous doses: $oldsymbol{U}_i = (s_{i\ell}, D_{i\ell})$, $\ell = 1, \ldots, d_i$
- One-compartment model (principle of superposition)

$$m(t, \boldsymbol{U}_i, \boldsymbol{\theta}_i) = \sum_{\ell: s_{i\ell} < t} \frac{D_{i\ell}}{V_i} \exp\left\{-\frac{Cl_i}{V_i}(t - s_{i\ell})\right\}$$

 Objectives: Characterize PK and its variation – Mean/median Cl_i, V_i? Systematic associations with among-infant covariates? Extent of unexplained variation?

Dosing history and concentrations for one infant:

Non-linear mixed model:

• Stage 1 – Individual-level model

 $E(Y_{ij} | \boldsymbol{U}_i, \boldsymbol{\theta}_i) = m(t_{ij}, \boldsymbol{U}_i, \boldsymbol{\theta}_i), \quad \mathsf{Cov}(\boldsymbol{Y}_i | \boldsymbol{U}_i, \boldsymbol{A}_i) = V_i(\boldsymbol{U}_i, \boldsymbol{\theta}_i, \boldsymbol{\alpha}) = \sigma_e^2 I_{n_i}$

⇒ negligible autocorrelation, measurement error dominates and has constant variance

• Stage 2 – Population model

- Without among-infant covariates $oldsymbol{A}_i$

$$\log Cl_i = \beta_1 + b_{i1}, \quad \log V_i = \beta_2 + b_{i2}$$

- With among-infant covariates $oldsymbol{A}_i$

 $\log Cl_{i} = \beta_{1} + \beta_{3}w_{i} + b_{i1}, \quad \log V_{i} = \beta_{2} + \beta_{4}w_{i} + \beta_{5}\delta_{i} + b_{i2}$

Empirical Bayes estimates vs. covariates: Fit without

Non-Clinical Statistics 2008

Empirical Bayes estimates vs. covariates: Fit with

Non-Clinical Statistics 2008

Relaxing the normality assumption on b_i : Represent the density of b_i by a *flexible form*, fit by *maximum likelihood*

Multivariate response: More than one type of response measured longitudinally on each individual

- *Objectives:* Understand the relationships between the response trajectories and the *processes underlying* them
- Key example: *pharmacokinetic/pharmacodynamic* (PK/PD) analysis
- PD "What the drug does to the body"

Example: Argatroban study

- In addition to drug concentrations, samples at 5-9 time points from 0 to 540 min (not necessarily the same as for concentrations) => measure activated partial thromboplastin time (aPTT)
- aPTT is the *pharmacodynamic* response
- *Goal*: Elucidate the *relationships* between argatroban concentration and aPTT and among underlying PK and PD processes

Required: A joint model for PK and PD

• Data :

- Y_{ij}^{PK} at times t_{ij}^{PK} (*PK* concentrations) - Y_{ij}^{PD} at times t_{ij}^{PD} (*PD* aPTT responses)
- One compartment model for PK

$$m^{PK}(t, \boldsymbol{U}_{i}, \boldsymbol{\theta}_{i}^{PK}) = \frac{D_{i}}{e^{Cl_{i}^{*}}} \left[\exp\left\{\frac{e^{Cl_{i}^{*}}}{e^{V_{i}^{*}}}(t - t_{\inf})_{+}\right\} - \exp\left(-\frac{e^{Cl_{i}^{*}}}{e^{V_{i}^{*}}}t\right) \right]$$
$$\boldsymbol{\theta}_{i}^{PK} = (Cl_{i}^{*}, V_{i}^{*})', \quad \boldsymbol{U}_{i} = (D_{i}, t_{\inf})$$

• PK analysis \implies can obtain *individual estimates* $\hat{\theta}_i^{PK}$ and *predicted concentrations* $m(t_{ij}^{PD}, \hat{\theta}_i^{PK})$

•
$$\implies$$
 plot Y_{ij}^{PD} vs. $m(t_{ij}^{PD}, \widehat{\boldsymbol{\theta}}_{i}^{PK})$

Non-Clinical Statistics 2008

Concentration-PD response relationship:

Suggests: *Empirical model* for concentration-aPTT response relationship – sigmoidal " E_{max} model"

aPTT =
$$m^{PD}(\operatorname{conc}, \boldsymbol{\theta}^{PD}) = E_0 + \frac{E_{\max} - E_0}{1 + EC_{50}/\operatorname{conc}}$$

 $\boldsymbol{\theta}^{PD} = (E_0, E_{\max}, EC_{50})'$

Result: Assuming *measurement error dominates* realization variation, so "*true*" PK concentration for i at $t \approx m(t, U_i, \theta_i^{PK})$

• Stage 1 – Individual-level model

$$\begin{split} Y_{ij}^{PK} &= m^{PK}(t_{ij}^{PK}, \boldsymbol{U}_i, \boldsymbol{\theta}_i^{PK}) + e_{ij}^{PK} \\ Y_{ij}^{PD} &= m^{PD}\{m^{PK}(t_{ij}^{PD}, \boldsymbol{U}_i, \boldsymbol{\theta}_i^{PK}), \boldsymbol{\theta}_i^{PD}\} + e_{ij}^{PD} \end{split}$$

• e_{ij}^{PK} , e_{ij}^{PD} mutually *independent* (primarily *measurement error*)
Full model: *Combined* responses $\mathbf{Y}_i = (\mathbf{Y}_i^{PK'}, \mathbf{Y}_i^{PD'})'$

$$\boldsymbol{\theta}_i = (\boldsymbol{\theta}_i^{PK\prime}, \boldsymbol{\theta}_i^{PD\prime})' = (Cl_i^*, V_i^*, E_{0i}, E_{\max,i}, EC_{50i})'$$

• Stage 1 – Individual-level model

$$\begin{split} E(Y_{ij}^{PK}|\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}) &= m^{PK}(t_{ij}^{PK},\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}^{PK}) \\ E(Y_{ij}^{PD}|\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}) &= m^{PD}\{m^{PK}(t_{ij}^{PD},\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}^{PK}),\boldsymbol{\theta}_{i}^{PD}\} \\ \text{Cov}(\boldsymbol{Y}_{i}|\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}) &= \text{block diag}\{V_{i}^{PK}(\boldsymbol{U}_{i},\boldsymbol{\theta}_{i},\boldsymbol{\alpha}^{PK}),V_{i}^{PD}(\boldsymbol{U}_{i},\boldsymbol{\theta}_{i},\boldsymbol{\alpha}^{PD})\} \\ V_{i}^{PK}(\boldsymbol{U}_{i},\boldsymbol{\theta}_{i},\boldsymbol{\alpha}^{PK}) &= \sigma_{e,PK}^{2}\text{diag}[\dots,\{m^{PK}(t_{ij}^{PK},\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}^{PK})\}^{2\zeta^{PK}},\dots] \\ V_{i}^{PD}(\boldsymbol{U}_{i},\boldsymbol{\theta}_{i},\boldsymbol{\alpha}^{PD}) &= \sigma_{e,PD}^{2}\text{diag}\Big(\dots,[m^{PD}\{m^{PK}(t_{ij}^{PD},\boldsymbol{U}_{i},\boldsymbol{\theta}_{i}^{PK}),\boldsymbol{\theta}_{i}^{PD}\}]^{2\zeta^{PD}},\dots\Big) \end{split}$$

• Stage 2 – Population model

$$\boldsymbol{\theta}_i = \boldsymbol{\beta} + \boldsymbol{b}_i, \quad \boldsymbol{\beta} = (\beta_1, \dots, \beta_5)', \quad \boldsymbol{b}_i \sim N(\mathbf{0}, G)$$

Time-dependent among-individual covariates: Among-individual covariates *change* over time *within an individual*

- In principle, one could write θ_{ij} for each t_{ij} ; however...
- *Key issue*: Does this make *scientific sense*?
- *PK*: Do *pharmacokinetic processes* vary *within* an individual?

Example: Quinidine study

- Creatinine clearance, α_1 -acid glycoprotein concentration, etc, change over dosing intervals
- How to incorporate *dependence of* Cl_i , V_i on α_1 -acid glycoprotein concentration?

Data for a representative subject:

time (hours)	conc. (mg/L)	dose (mg)	age (years)	weight (kg)	creat. (ml/min)	glyco. (mg/dl)
0.00	_	166	75	108	> 50	69
6.00	_	166	75	108	> 50	69
11.00	_	166	75	108	> 50	69
17.00	_	166	75	108	> 50	69
23.00	_	166	75	108	> 50	69
27.67	0.7	_	75	108	> 50	69
29.00	_	166	75	108	> 50	94
35.00	_	166	75	108	> 50	94
41.00	_	166	75	108	> 50	94
47.00	_	166	75	108	> 50	94
53.00	_	166	75	108	> 50	94
65.00	_	166	75	108	> 50	94
71.00	_	166	75	108	> 50	94
77.00	0.4	_	75	108	> 50	94
161.00	—	166	75	108	> 50	88
168.75	0.6	_	75	108	> 50	88

height=72 inches, Caucasian, smoker, no ethanol abuse, no CHF

Population model: *Standard approach in PK*

- For subject *i*: α₁-acid glycoprotein concentration likely measured *intermittently* at times 0, 29, 161 hours and *assumed constant* over the intervals (0,29), (29,77), (161,·) hours
- For intervals I_k, k = 1,..., a (a = 3 here), A_{ik} = among-individual covariates for t_{ij} ∈ I_k ⇒ e.g., linear model

$$oldsymbol{ heta}_{ij} = oldsymbol{A}_{ik}oldsymbol{eta} + oldsymbol{b}_i$$

- This *population model* assumes "*within subject inter-interval variation*" entirely "*explained*" by changes in covariate values
- Alternatively: Nested random effects

$$oldsymbol{ heta}_{ij} = oldsymbol{A}_{ik}oldsymbol{eta} + oldsymbol{b}_i + oldsymbol{b}_{ik}, \ oldsymbol{b}_i, oldsymbol{b}_{ik}$$
 independent

Multi-level models: More generally

• Nesting: E.g., responses Y_{ikj} , $j = 1, ..., n_{ik}$, on several trees $(k = 1, ..., v_i)$ within each of several plots (i = 1, ..., N)

$$\boldsymbol{\theta}_{ik} = \boldsymbol{A}_{ik} \boldsymbol{\beta} + \boldsymbol{b}_i + \boldsymbol{b}_{ik}, \ \ \boldsymbol{b}_i, \boldsymbol{b}_{ik}$$
 independent

Missing/mismeasured covariates: A_i , U_i , t_{ij}

Censored response: E.g., due to an *assay quantification limit*

Semiparametric models: Allow $m(t, U_i, \theta_i)$ to depend on an *unspecified function* $g(t, \theta_i)$

• Flexibility, model misspecification

Clinical trial simulation: "*Virtual*" subjects simulated from a *non-linear mixed-effects model* for *PK/PD/disease progression* linked to a *clinical end-point*

Discussion

Summary:

- The *non-linear mixed-effects model* is now a *standard statistical framework* in many areas of application
- Is appropriate when scientific interest focuses on *within-individual mechanisms/processes* that can be represented by *parameters* in a *non-linear* (often *theoretical*) *model* for *individual time course*
- Free and commercial *software* is available, but implementation is still *complicated*
- *Specification* of models and assumptions, particularly the *population model*, is somewhat an *art-form*
- Current challenge: High-dimensional A_i (e.g., genomic information)
- Still plenty of *methodological research* to do

Discussion

See the references on slide 3 for an extensive bibliography

